Transfusion Medium with Cryopreserved Umbilical Blood Nucleated Cells: From Procurement to Possible Clinical Usage

P.M. Perekhrestenko, G.T. Glukhenkaya, T.A. Kalinichenko, M.K. Algazinova
Institute of Haematology and Transfusiology of Academy of Medical Sciences of Ukraine, Kiev

Oписывается характеристика трансфузционной среды с криоконсервированными ядроносителями клетками пуповинной крови как средства для гемокомпонентной терапии по строго дифференцированным показаниям у больных с гемодепрессивными состояниями в онкологической и онкоематологической клиниках.

Ключевые слова: гемотрансфузионная среда, пуповинная кровь, ядроноситель клетки, криоконсервация, гемодепрессии.

Component hemotherapy is a new transfusion tactic which replaced the one of the whole blood due to achievement in contemporary transfusiology and cryobiology in blood conservation and fractionation. Such an approach enables the enhancing of hemotherapy efficiency on differentiated indices depending on deficit of certain cell and protein blood components of a patient as well as to extend the use sphere for donor’s blood as multicomponent polyfunctional therapeutic mean under various pathologies.

Nowadays along with traditional source of deriving necessary components, adult donor peripheral blood (ADPHB), also umbilical blood (UB) is applied, it is newborn peripheral blood, remaining in umbilical vein and placenta after birth and separation from mother.

Under conditions of growing aggression of cytostatic therapy of oncological and oncohematological diseases the frequency of various infection complications at low level of granulocytes in patients with acute leukaemias has increased up to 64-79% [7]. Arsenal of treatment and prevention of complications of cytostatic disease are antibiotics of new generation, recombinant growth factors, donor blood components. Herewith only 50-60% of cases are jugulated just by antibiotics [7, 10], therefore hemocomponent therapy of agranulogitosis has gained higher value.

Component hemotherapy is a new transfusion tactic which replaced the one of the whole blood due to achievement in contemporary transfusiology and cryobiology in blood conservation and fractionation. Such an approach enables the enhancing of hemotherapy efficiency on differentiated indices depending on deficit of certain cell and protein blood components of a patient as well as to extend the use sphere for donor’s blood as multicomponent polyfunctional therapeutic mean under various pathologies.

Nowadays along with traditional source of deriving necessary components, adult donor peripheral blood (ADPHB), also umbilical blood (UB) is applied, it is newborn peripheral blood, remaining in umbilical vein and placenta after birth and separation from mother.

Under conditions of growing aggression of cytostatic therapy of oncological and oncohematological diseases the frequency of various infection complications at low level of granulocytes in patients with acute leukaemias has increased up to 64-79% [7]. Arsenal of treatment and prevention of complications of cytostatic disease are antibiotics of new generation, recombinant growth factors, donor blood components. Herewith only 50-60% of cases are jugulated just by antibiotics [7, 10], therefore hemocomponent therapy of agranulogitosis has gained higher value.

Component hemotherapy is a new transfusion tactic which replaced the one of the whole blood due to achievement in contemporary transfusiology and cryobiology in blood conservation and fractionation. Such an approach enables the enhancing of hemotherapy efficiency on differentiated indices depending on deficit of certain cell and protein blood components of a patient as well as to extend the use sphere for donor’s blood as multicomponent polyfunctional therapeutic mean under various pathologies.

Nowadays along with traditional source of deriving necessary components, adult donor peripheral blood (ADPHB), also umbilical blood (UB) is applied, it is newborn peripheral blood, remaining in umbilical vein and placenta after birth and separation from mother.

Under conditions of growing aggression of cytostatic therapy of oncological and oncohematological diseases the frequency of various infection complications at low level of granulocytes in patients with acute leukaemias has increased up to 64-79% [7]. Arsenal of treatment and prevention of complications of cytostatic disease are antibiotics of new generation, recombinant growth factors, donor blood components. Herewith only 50-60% of cases are jugulated just by antibiotics [7, 10], therefore hemocomponent therapy of agranulogitosis has gained higher value.
осложнений цитостатической болезни – антибиотики нового поколения, рекомбинантные факторы роста, компоненты донорской крови. При этом только 50-60% случаев купируются одними антибиотиками [7, 10], поэтому гемокомпонентная терапия агранулоцитоза приобретает всё большее значение.

Результаты предварительных исследований, проведенных в Институте гематологии и трансфузиологии АМНУ и Институте онкологии АМНУ, показали, что применение компонентной трансфузионной среды, содержащей ядерные клетки ПК, у больных с иммуногемодепрессией снижает риск возникновения осложнений цитостатической болезни и повышает качество лечения основного заболевания [4-6, 8, 9]. При этом перспектива внедрения указанного ядерно-клеточного компонента ПК в клиническую практику как разновидности трансфузионной среды имеет явные преимущества перед лейкоконцентратом ПКВД. Существенная отрицательная характеристика последнего – высокая иммунокомпетентность зрелых клеток белого ростка кроветворения, сконцентрированных в большом количестве (в среднем 12×10⁹ лейкоцитов), необходимом для терапевтического результата от одной трансфузии. Для получения необходимой дозы фракционированию подлежит около 5 л крови нескольких здоровых доноров [7]. При этом эффект от такой терапии не стойкий, поэтому необходимы повторные введения лейкоконцентратов (иногда до 7 раз). Сложность получения указанной трансфузионной среды определяет высокий риск заражения трансмиссионными инфекциями, а также значительную себестоимость курса терапии. В связи с небезопасностью для больного трансфузии концентрата лейкоцитов не нашли широкого применения в лечебной практике.

Однако в клинических ситуациях, связанных с острыми формами гипоплазии костного мозга с лихорадочным состоянием и признаками локализованной или генерализованной инфекции, а также при необходимости предупреждения септических и инфекционных осложнений трансфузии гранулоцитов всё же считаются патогенетически оправданными [10, 11]. Для таких категорий пациентов подобная лечебная тактика актуальна.

В связи с тем, что положительный клинический эффект от введения трансфузионной среды с ядросодержащими клетками ПК при указанных ситуациях подобен позитивному действию лейкоконцентратата взрослого донора, необходимо отметить преимущества такой трансфузионной тактики. Прежде всего, для клинически значимого положительного эффекта достаточно введения однократной дозы ядросодержащих клеток

Results of preliminary studies performed at the Institute of Hematology and Transfusiology of Academy of Medical Sciences of Ukraine and Institute of Oncology of Academy of Medical Sciences of Ukraine have shown that use of component transfusion medium containing nucleated cells of UB in patients with immune hemodepressions reduces a risk of appearance of cytostatic disease complications and increases the quality of main disease treatment [4-6, 8, 9]. In this case prospects of introduction of the mentioned above nucleated components of UB into practice as a type of transfusion medium has vivid advantages versus ADPhB leukoconcentrate. Important negative feature of the latter is high immune competence of white lineage mature cells, concentrated in a great number (in average 12×10⁹ leukocytes necessary for therapeutic result from one transfusion). To obtain needed dose about 5l of several healthy donors’ blood is to be fractionated [7]. Herewith the effect of such a therapy is instable therefore repeated introductions of leukoconcentrates are indispensable (sometimes up to 7 times). Complicated obtaining of the mentioned transfusion medium determines a high risk of contamination with transmissive infections as well as therapy course high cost price. Because of their insecurity for a patient the leukocytes’ concentrate transfusion did not find wide use in therapeutic practice.

However in clinical situations related to acute forms of bone marrow hypoplasia with fever state and signs of localized and generalized infection and also when needed to prevent septic and infection complications transfusions of granulocytes are still pathogenetically feasible [10, 11]. This therapeutic tactics for these categories of patients is actual.

Due to positive clinical effect of introduction of transfusion medium with UB nucleated cells under mentioned conditions is similar to the one of adult donor’s leukokoncentrate the advantages of this transfusion tactics should be noted. First of all for clinically significant positive effect it is sufficient to introduce a single dose of nucleated cells of umbilical blood obtained at one standard procurement (50 ml volume) [4, 9]. Relatively decreased immune reactivity of neonatal leukocytes [2] enables avoiding non-hemolytic post-transfusion reactions in their recipients, as well as at sensibilisation by previous multiple transfusions. Latter statement is clinically confirmed including our observations in recipients with such reactions to other hematransfusion media in their records [4, 5, 9]. To the advantages of hemocomponent medium of umbilical blood nucleated cells there should be referred extended in respect of adult recipient leukoconcentrate functional potential of the cells being the components due to content of components of different maturity level up to “stem” ones [1]. Low
пуповинной крови, полученной при одном стандарте артефакта (объемом от 50 мл) [4, 9]. Относительно сниженная иммунореактивность неонатальных лейкоцитов [2] позволяет избежать негемолитических постреанимационных реакций у их реципиентов, в том числе при сенсибилизации предъявлением многократным трансфузиям. Последний тезис подтверждён клинически, в том числе и нашими наблюдениями за реципиентами, имевшими в анамнезе такие реакции на другие гемотрансфузионные среды [4, 5, 9]. К преимуществам гемокомпонентной среды ядерных клеток пуповинной крови следует отнести и расширенный относительно лейкоцитов разового донора функциональный потенциал входящих в неё клеток за счёт содержания компонентов разного уровня зрелости, вплоть до "стволовых" [1]. Низкий риск передачи гемотрансфузионных инфекций реципиенту с неонатальным материалом делает ПК безопасным источником получения гемокомпонентных сред.

Консервирование — единственный способ хранения трансфузионной среды в биологически полноценном состоянии длительное время, создающие достаточного запаса материала и транспортировки его на значительные расстояния для осуществления направленной терапии строго по показаниям. Обеспечение гарантии качества трансфузионной среды обязательно на всех этапах: от заготовки безопасного источника до приготовления к введению в организм реципиента. Все стадии процесса должны соответствовать регламентированным общепрофессиональным правилам с учетом специфики источника. Для обеспечения гарантии качества трансфузионной среды необходимо стандартизация операционных процедур по работе с ней. Существующие методы работы с ПК (от сбора до клинического применения) вызывают широкую дискуссию специалистов по вопросу их стандартизации.

Следует отметить, что правовое и техническое обеспечение работы с ПК как объектом гемокомпонентной терапии (выбор донора, лабораторное обследование, хранение, транспортировка, клиническое применение клеток ПК с целью гемокомпонентной терапии) охватывает сферой действия законодательства о донорстве крови и её компонентов. Объем введения трансфузионной среды с ядерными клетками пуповинной крови не ограничен жесткими рамками, так как требования к клинически эффективной дозе в расчете на килограмм массы реципиента существенно ниже требований, предъявляемых к образцу пуповинной крови как транспланту. Тестирование ПК, которая будет использована для приготовления компонентной трансфузионной среды, проводится

risk of transmission of haemotransfusion infections to a recipient with neonatal material makes UB a safe source of obtaining hemocomponent media.

Cryopreservation is a single way to store transfusion medium in biologically integral state for a long time, to create essential stocks of material and transport it for long distances to perform targeted therapy strictly according to indications. Providing the guarantee of transfusion medium quality is mandatory at all the stages: from procurement of safe source up to preparing to the introduction into a recipient’s organism. All stages of the process should correspond to specified industry-wide rules taking into account the specific origin of the source. To provide the quality guarantee of transfusion medium there is necessary standardizing of the procedure operations. Existing methods of UB use (from the collection up to clinical application) has started a wide discussion of experts on their standardizing issue.

It should be noted that juridical and technical provision of the operating with UB as an object of hemocomponent therapy (donors’ selection, laboratory screening, storage, transportation, clinical application of UB cells with the aim of hemocomponent therapy) comes within the purview of legislation on donation of blood and its components. The volume of introduction of transfusion medium with umbilical blood nucleated cells is unlimited since the requirements to clinically effective dose per kilogram of recipient’s mass is significantly lower than demanded from the umbilical blood sample as a transplant. Testing of UB to be used for preparing component transfusion medium is performed in accordance with the “Inspection way for donors of blood and/or its components”, approved by the order of the Ministry of Health Care of Ukraine “On infection safety of donor’s blood and its components” N385 dated 01.08.2005.

Full-scale complex approach to the development of quality standards of hemocomponent transfusion medium of the concentrate of umbilical blood nucleated cells should meet national rules and professional standards as well as to take into account international quality parameters. This concerns all the spheres of the process providing: quality guarantee of reagents, solutions and their components, testing, professional knowledge and skills of the staff involved into the development and further accomplishing the technique, technology implementation, material testing, measures on technical service of equipment, including recording and examining the causes of failures and emergency cases.

We have considered the quality criteria of presented transfusion medium of UB nucleated cells as a therapy mean for immune hemodepressive states regarding the conformity of procedures and operations with it to branch rules and standards valid in Blood
Перед замораживанием образцы хранили в условиях стабильного температурного режима при комнатной температуре до 18 часов.
Контроль образцов на отсутствие возбудителей трансмиссивных инфекций проводили путём скрининга сыворотки крови роженицы методом ИФА в установленном для лаборатории ВИЧ-диагностики института. Определение HLA-антителов человека осуществлялось в лаборатории тканевого типирования Киевского центра трансплантации костного мозга. Образцы ПК тестирулись на принадлежность к группам крови по системе АВО и Rh-фактору, а также исследовали на стерильность.

При подготовке к замораживанию образцов использовали два подхода. Первый подход — выделение ядерных клеток в отдельную фракцию при удалении большинства эритроцитов с помощью коллоидного раствора 6%-го гидроксиэтилированного крахмала, а также уменьшение объёма путём концентрации клеток и последующее замораживание. В этом случае условием успешного приготовления является атравматичное фракционирование, т.е. превращение полифазной системы в однофазную. Второй подход — замораживание при сохранённом клеточном составе с последующей подготовкой к трансфузии после размораживания путём удаления продуктов гемолиза эритроцитов. Целесообразность применения указанных технологий обусловлена необходимостью сохранения образцов разного объёма для определенных клинических ситуаций.

При этом в качестве криопротектора использовали медицинский низкомолекулярный поливинилпирролидон (ПВП) в конечной концентрации 8%, являющийся биологически инертным (нетоксичным) веществом относительно клеток и организма в целом [3]. При работе с ПВП не требуются дополнительные меры предосторожности, манипуляции и специальные условия. После программного замораживания (адаптированные к холоду при температуре 4°C в течение 20-ти минут образцы подвергали медленному замораживанию со скоростью 1°C/мин от 4°C до –6°C, далее от –6 до –80°C со скоростью 10°C/мин) образцы хранятся при температуре жидкого азота. Промежуточный контроль качества осуществляется путём анализа материала в ампулах-спутниках.

Причинами непригодности образца являются низкая клеточность, связанная с заготовкой малых объёмов; нарушение условий стерильности; выявление маркеров контаминации возбудителями трансмиссивных инфекций; нарушение технологии заготовки (наличие стука вследствие неправильного смешивания с гемоконсервантом, большое разведение крови из-за несоблюдения пропорции крови и гемоконсерванта); технические концентрации 8% which is biologically inert (non-toxic) substance in respect of cells and entire organism [3]. When using PVP there is no necessity in additional precautions, manipulations and special conditions. After programmable freezing (cold exposure at 4°C during 20 min, followed by freezing with slow rate of 1°C per min from 4 to –6°C, and rate of 10°C from –6°C to 80°C) the samples are stored at liquid nitrogen temperature. In-between quality control is performed by means of analysis in satellite vials.

The causes of unsuitability of sample are low cellularity, associated with the procurement of small volumes; failure of sterility requirements; revealing the contamination markers by the germs of transmissible infections; procedural violations of procurement technology (presence of clots as a consequence of incorrect mixing with hemopreservative, incorrect blood/ hemopreservative proportion when diluting blood); technical failures during cryopreservation process.

All solutions and components used for technological process accomplishing are approved for application in blood service of Ukraine that is the main quality guarantee of a sample. All testing stages for blood are performed in specialized laboratories. Operations in preparing transfusion medium to freezing and frozen-thawed cells to transfusion have been developed by the researchers of the Institute and controlled by physician-transfusologist with experienced nurses of Kiev City Blood Center.

Cell viability is the only criterion of efficiency in the process of preparing transfusion medium as well as restricting factor when using the cryopreservation technology. To estimate sample quality along with visual control and express methods counting the number and viability of nucleated cells the tests for investigating composition and morphology of nucleated cells are used. Dose per kilogram of a recipient’s mass is calculated on the indices of total number of nucleated cells and/or mononuclear ones.

The criterion confirming sample quality is its clinical efficiency extent, i.e. “competence” as therapeutic mean. Absence of negative post-transfusion responses of non-hemolytic type in recipients of transfusion medium with UB cryopreserved cells testifies to a proper quality of transfusion medium.

Thus presented hemotransfusion medium with cryopreserved UB nucleated cells when meeting the guarantees of quality during preparation and storage is functionally integral, applicable for therapeutic practice in patients with immune hemodepressive states. Perspective of clinical introduction of UB hemotransfusion medium demands establishing of essential stocks of the material basing on legislative regulatory work.
проблемы, возникающие в процессе криоконсервирования.

Все растворы и их компоненты, используемые при выполнении технологического процесса, разрешены к применению в Службе крови Украины. Все этапы тестируемы крови проводятся в специализированных аккредитованных лабораториях. Операции по приготовлению трансфузионной среды к замораживанию и подготовке размороженных клеток к трансфузии разработаны сотрудниками института, выполняются под контролем врача-трансфузиолога опытными операционными сестрами Киевского городского центра крови.

Жизнеспособность клеток – единственный критерий эффективности в процессе приготовления трансфузионной среды, а также фактор ограничения при осуществлении технологии криоконсервирования. Для оценки качества образца, наряду с визуальным контролем и экспресс-методами подсчета количества и жизнеспособности ядерных клеток, применяются тесты для изучения состава и морфологии ядерных клеток. Доза на килограмм массы реципиента рассчитывается по показателям общего количества ядерных клеток и/или мононуклеаров.

Подтверждающий качество образца критерий – степень его клинической эффективности, т.e. “состоятельность” как терапевтического средства. Отсутствие у реципиентов трансфузионной среды с криоконсервированными клетками ПК негативных посттрансфузионных реакций негемолитического типа свидетельствует о надлежащем качестве трансфузионной среды.

Таким образом, представленная гемотрансфузионная среда с криоконсервированными ядерными клетками ПК при соблюдении гарантии качества при её приготовлении и хранении является функционально полноценным, пригодным для практического применения терапевтическим средством для больных с иммуногемодепрессивными состояниями. Перспектива клинического внедрения гемотрансфузионной среды ПК требует создания необходимых запасов материала на основе нормативно-правовой регламентации работы.

Литература

3. Лаврик С.С., Козут Г.И., Паричева Н.И. и др. Криоконсервирующий раствор для костного мозга // Гематология и трансфузология.— 1984.— №4.— С. 62-64.
4. Перехрестенко П.М., Глухенька Г.Т., Каплинченко Т.А. и др. Применение криоконсервированных гемопоэтических клеток кордовой крови человека в лечении химиолучевых депрессий кроветворения у онкологических больных // Зб. наук. праць КМАПО ім. П.Л. Шупика.— 1999.— Вип. 8.— С. 369-374.
5. Перехрестенко П.М., Сіюкович С.О., Глухенька Г.Т. та інш. Застосування криоконсервованої кордової крові при лікуванні хворих на злоякісну лімфому // Лікарська справа.— 2002.— №2.— С. 76-80.
6. Перехрестенко П.М., Глухенька Г.Т., Каплинченко Т.О. та інш. Криоконсервування і клінічне застосування гемопоєтичних клітин пуповинної (кордової) крові // Пробл. криобиологии.— 2001.— №3.— С. 58-59.
7. Румянцев А.Г., Аграненко В.А. Клиническая трансфузология.— М.: ГЭОТАР МЕДИЦИНА, 1998.— С. 173-188.
8. Третяк Н.М., Глухенька Г.Т., Перехрестенко Т.П. та інш. Досвід застосування кордової крові в якості компонентної терапії у хворих на гострі лейкемії // Гематологія і переливання крові.— 2004.— Вип. 32.— С. 302-305.

Поступила 01.09.2005