Cryopreservation of Multicellular Spheroids Derived From Newborn Piglet Adrenal Glands


  • Ekaterina M. Plaksina Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
  • Olga C. Sidorenko Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
  • Galina A. Bozhok Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv



multicellular spheroids, adrenal glands, dimethylsulfoxide, β-III-tubulin, neuroblast-like cells, fibroblast-like cells, rats


Application of special in vitro culture techniques for the cells, derived from different animal and human organs, makes
possible the obtaining of multicellular spheroids (MSs), being the natural 3-D environment for cells unlike the standard culture with the
cells in monolayer. Previously we have shown that MSs formed in the newborn piglet adrenal cell culture are capable to produce the
neuroblast-like cells, expressing the neuronal marker β-III-tubulin. In the present work we have assessed the regimens for MSs
cryopreservation using 5, 7 and 10% dimethyl sulfoxide (DMSO) and 25% fetal bovine serum (FBS). Analysis of some characteristics
of cryopreserved MSs (surface adhesion, capability to produce the neuroblast-like cells and monolayer formation by fibroblast-like
cells) allowed to choose the cryopreservation regimen with 1°C/min cooling rate in the presence of 10% DMSO as the most optimal
one. The FBS supplement to the medium did not significantly affect the cryopreservation outcome, although there was found a
tendency to increase the capability of cryopreserved MSs to produce the neuroblast- and fibroblast-like cells.

Probl Cryobiol Cryomed 2017; 27(4): 322-333

Author Biographies

Ekaterina M. Plaksina, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryoendocrinology

Olga C. Sidorenko, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryoendocrinology

Galina A. Bozhok, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryoendocrinology


Amano S., Yamagami S., Mimura T., Uchida S. et al. Corneal stromal and endothelial cell precursors. Cornea 2006; 25 (10, Suppl. 1):73–77. CrossRef PubMed

Bondarenko T.P., Legach E.I., Kiroshka V.V. et al. Cultivation, cryopreservation and tissue transplantation of endocrine glands. Current problems of cryobiology and cryomedicine / Ed. By A.N. Goltsev. – Kharkiv; 2012. p. 361–401.

Bozhok G.A., Sidorenko O.S., Plaksina E.M. et al. Neural differentiation potential of sympathoadrenal progenitors derived from fresh and cryopreserved neonatal porcine adrenal glands. Cryobiology 2016; 73(2): 152–161. CrossRef PubMed

Chen J., Hersmus N., Van Duppen V. et al. The adult pituitary contains a cell population displaying stem/progenitor cell and early embryonic characteristics. Endocrinology 2005; 146(9): 3985–3998. CrossRef PubMed

Chong Y.K., Toh T.B., Zaiden N. et al. Cryopreservation of neurospheres derived from human glioblastoma multiforme. Stem Cells 2009; 27(1): 29–39. CrossRef PubMed

Chung K.F., Sicard F., Vukicevic V. et al. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla. Stem Cells 2009; 27(10): 2602–2613. CrossRef PubMed

Dontu G., Al-Hajj M., Abdallah W.M. et al. Stem cells in normal breast development and breast cancer. Cell Prolif 2003; 36 (Suppl. 1): 59–72. CrossRef PubMed

Ehrhart F., Schulz J.C., Katsen-Globa A. et al. A comparative study of freezing single cells and spheroids: towards a new model system for optimizing freezing protocols for cryobanking of human tumours. Cryobiology 2009; 58(2): 119–127. CrossRef PubMed

Freshney R. Culture of Animal Cells: a Manual of Basic Technique. New York: Alan R. Liss, Inc.; 1987. PubMed

Friedrich J., Seidel C., Ebner R., Kunz-Schughart L.A. Spheroidbased drug screen: considerations and practical approach. Nat Protoc 2009; 4(3): 309–324. CrossRef PubMed

Gil-Perotin S., Duran-Moreno M., Cebrian-Silla A. et al. Adult neural stem cells from the subventricular zone: a review of the neurosphere assay. Anat Rec (Hoboken) 2013; 296(9): 1435–1452. CrossRef PubMed

Hammarback J.A., Palm S.L., Furcht L.T., Letourneau P.C. Guidance of neurite outgrowth by pathways of substratum-adsorbed laminin. Journal of Neuroscience Research 1985; 13(1–2): 213–220. CrossRef PubMed

Ivascu A., Kubbies M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen 2006; 11(8): 922–932. CrossRef PubMed

Koenigsmann M.P., Koenigsmann M., Notter M. et al. Adhesion molecules on peripheral blood-derived CD34+ cells: effects of cryopreservation and short-term ex vivo incubation with serum and cytokines. Bone Marrow Transplant 1998; 22(11): 1077–1085. CrossRef PubMed

Kuzmuk K., Schook L. Pigs as a model for biomedical sciences. In: Rothschild M.F., Ruvinsky A., editors. The Genetics of the Pig, 2nd ed. Cambridge: Oxfordshire, 2011. p. 426–444. CrossRef

Martin-Ibanez R., Hovatta O., Canals J. Cryopreservation of human pluripotent stem cells: are we going in the right direction? In: Katkov I.I., editor. Current Frontiers in Cryobiology. Croatia: InTech, 2012. p. 139–165. CrossRef

Milosevic J., Storch A., Schwarz J. Cryopreservation does not affect proliferation and multipotency of murine neural precursor cells. Stem Cells 2005; 23(5): 681–688. CrossRef PubMed

Morris C.B. Cryopreservation of animal and human cell lines. In: Day J.G., McLellan M.R., editors. Methods in Molecular Biology, Cryopreservation and Freeze-drying Protocols. New Jersey: Humana Press Inc., 1995; p. 179–187. CrossRef

Nyberg S.L., Hardin J., Amiot B. et al. Rapid, large-scale formation of porcine hepatocyte spheroids in a novel spheroid reservoir bioartificial liver. Liver Transpl 2005; 11(8): 901–910. CrossRef PubMed

Plaksina E.M., Sidorenko O.S., Legach E.I. et al. Expression of β- III-tubulin in the neonatal adrenal cell culture: comparison of monolayer and 3D-culture. Vestnik Khar'kovskogo natsional'nogo universiteta imeni V. N. Karazina, Seriya 'Biologiya' 2017; 28: 76-86.

Rock J.R., Onaitis M.W., Rawlins E.L. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA 2009; 106(31): 12771–12775. CrossRef PubMed

Sanie-Jahromi F., Ahmadieh H., Soheili Z.S. et al. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid. BMC Res Notes 2012; 5 (182). CrossRef PubMed

Santana M.M., Chung K.F., Vukicevic V. et al. Isolation, characterization, and differentiation of progenitor cells from human adult adrenal medulla. Stem Cells Transl Med 2012; 1(11): 783–791. CrossRef PubMed

Saxena S., Wahl J., Huber-Lang M.S. et al. Generation of murine sympathoadrenergic progenitor-like cells from embryonic stem cells and postnatal adrenal glands. PLoS One 2013; 8(5): e64454. CrossRef PubMed

Sidorenko O.S., Bozhok G.A., Legach E.I., Bondarenko T.P. Formation of cytospheres and neuronal differentiation in newborn piglet adrenal cell culture. Probl Cryobiol Cryomed 2013; 23(4): 359–362.

Su G.H. Pancreatic cancer: Methods and protocols. Totowa, New Jersey: Humana Press Inc.; 2005.

Sukach A.N. Influence of DMSO on the viability of human embryonic nerve cells and their behavior under in vitro culture conditions. Probl Cryobiol 2005; 15(3): 429–432.

Tamarina I., Bozhok G., Gurina T. et al. Cryopreservation of newborn mice adrenal cell suspension II. Effect caused by concentration of serum as component of cryoprotective medium. Probl Cryobiol Cryomed 2013; 23(1): 66–74.

Tan F.C., Lee K.H., Gouk S.S. et al. Optimization of cryopreservation of stem cells cultured as neurospheres: comparison between vitrification, slow–cooling and rapid cooling freezing protocols. CryoLetters 2007; 28(6): 445–460.

Toma J.G., McKenzie I.A., Bagli D., Miller F.D. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 2005; 23(6): 727–737. CrossRef PubMed

Tomita Y., Matsumura K., Wakamatsu Y. et al. Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. J Cell Biol 2005; 170(7): 1135–1146. CrossRef PubMed

Wagh V., Meganathan K., Jagtap S. et al. Effects of cryopreservation on the transcriptome of human embryonic stem cells after thawing and culturing. Stem Cell Rev 2011; 7(3): 506–517. CrossRef PubMed

Xiong H., Gendelman H.E. Current Laboratory Methods in Neuroscience Research. New York: Springer-Verlag; 2014. CrossRef




How to Cite

Plaksina, E. M., Sidorenko, O. C., & Bozhok, G. A. (2017). Cryopreservation of Multicellular Spheroids Derived From Newborn Piglet Adrenal Glands. Problems of Cryobiology and Cryomedicine, 27(4), 322–333.



Theoretical and Experimental Cryobiology