Use of Nanomaterials in Cryobiology and Cryomedicine


  • Anatoliy M. Goltsev Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
  • Mykola O. Bondarovych Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
  • Natalya M. Babenko Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
  • Yuliya O. Gaevska Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
  • Tatiana G. Dubrava Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
  • Maksim V. Ostankov Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv



cryobiology, nanotechnologies, nanoparticles, nanowarming, cryoablation


The review considers the possibility of using modern nanotechnological developments aimed to achieve alternative cryobiological goals. On the one hand, the use of nanomaterials will increase the functional value of thawed cells due to such unique characteristics of nanoparticles as size, shape, surface charge, chemical composition, etc. Nanomaterials can be used as nanocontainers for impermeable cryoprotective agents (CPAs) and cause significant changes in crystal formation, thermal conductivity and other properties of cells, tissues and organs, that increases the efficiency of their cryopreservation. On the other hand, the combined use of nanomaterials and low-temperature freezing factors is considered a promising method of destruction of pathologically altered cells and tissues, as it minimizes the risk of recurrence of oncopathology after insufficient freezing-out of the tumor site.


Probl Cryobiol Cryomed 2020; 30(4): 313–330

Author Biographies

Anatoliy M. Goltsev, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryopathophysiology and Immunology

Mykola O. Bondarovych, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryopathophysiology and Immunology

Natalya M. Babenko, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryopathophysiology and Immunology

Yuliya O. Gaevska, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryopathophysiology and Immunology

Tatiana G. Dubrava, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryopathophysiology and Immunology

Maksim V. Ostankov, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryopathophysiology and Immunology


Basu S, Binder RJ, Suto R, et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol. 2000; 12(11): 1539-46. CrossRef

Bischof J. Nanowarming: A new concept in tissue and organ preservation. Cryobiology [Internet]. 2015 [Cited 8.01.2020]; 71(1): 176. Available from: CrossRef

Blanc G. Sur les nanotechnologies. Futunbles. 2004; 293: 57-62.

Brockbank KGM, Chen Z, Greene ED, Campbell LH. Vitrification of heart valve tissues. In: Wolkers FW, Oldenhof H, editors. Cryopreservation and freeze-drying protocols. New York: Springer; 2015. p. 399-421. CrossRef

Chauhan VP, Stylianopoulos T, Martin JD, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 2012; 7(6): 383-8. CrossRef

Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles, developments and application of non-newtonian flows. In: Siginer DA, Wang HP, editors. Developments and applications of non-newtonian flows. New York: ASME; 1995. p. 99-105.

Cooper IS, Lee AS. Cryostatic congelation: a system for producing a limited, controlled region of cooling or freezing of biologic tissues. J Nerv Ment Dis. 1961; 133: 259-63. CrossRef

Di DR, He ZZ, Sun ZQ, Liu J. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine. 2012; 8(8): 1233-41. CrossRef

Eroglu A, Lawitts JA, Toner M, Toth TL. Quantitative microinjection of trehalose into mouse oocytes and zygotes, and its effect on development. Cryobiology. 2003; 46(2): 121-34. CrossRef

Etheridge ML, Xu Y, Rott L, et al. RF heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials. Technology. 2014; (2): 229-42. CrossRef

Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009; 3(1): 16-20. CrossRef

Fuller BJ. Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters. 2004; 25(6): 375-88.

Gage AA, Baust JG. Mechanisms of tissue injury in cryosurgery. Cryobiology. 1998; 37(3): 171-86. CrossRef

Goel R, Anderson K, Slaton J, et al. Adjuvant approaches to enhance cryosurgery. J Biomech Eng. [Internet]. 2009 July 28 [cited 22.10.2019]; 131(7): 074003. Available from: CrossRef

Goltsev AM, Bondarovych MO, Babenko NM, et al. Freezing levels determine successful cryoablation of Ehrlich carcinoma cells. In Risco R, Corral A. editors. Society for Low Temperature Biology. Proceedings of the 55th SLTB Scientific Conference, 2-4, 2019, Seville, Spain. Seville; 2019. p 54.

Goltsev AN, Babenko NN, Gaevskaya YA, et al. Nanotechniques inactivate cancer stem cells. Nanoscale Res Lett. [Internet]. 2017 June 15 [cited 05.11.2018]; 12(1): 415. Available from: CrossRef

Goltsev AN, Babenko NN, Gaevskaya YuA, et al. [Capability of orthovanadate-based nanoparticles to in vitro identification and in vivo inhibition of cancer stem cells.] Nanosystems, nanomaterials, nanotechnologies; 2013; 11 (4): 729-39. Russian

Goltsev AN, Babenko NN, Gaevskaya YuA, et al. Application of nanoparticles based on rare earth orthovanadates to inactivate Ehrlich carcinoma growth. Biotechnol Acta. 2015; 8(4): 113-21. CrossRef

Guha A, Devireddy RV. Effect of palmitoyl nanogold particles on the subzero thermal properties of phosphate buffered saline solutions. J Nanotechnol Eng Med. [Internet]. 2010 May 5 [cited 04.09.2019]; 1(2): 021004. Available from: CrossRef

Gun'ko VM, Turov VV, Bogatyrev VM, et al. Unusual properties of water at hydrophilic/hydrophobic interfaces. Adv Colloid Interface Sci. 2005; 118(1-3): 125-72. CrossRef

Gun'ko VM, Turov VV, Gorbic PP. [Water at the interface boundaries]. Kyiv: Naukova Dumka; 2009. 694 p. Russian

Gun'ko VM, Zarko VI, Goncharuk EV, et al. [Low-temperature dipolar relaxation in bovine serum albumin-nanooxide-water systems.]. Surface. 2009; 16 (1):14-25. Russian

Han B, Iftekhar A, Bischof JC. Improved cryosurgery by use of thermophysical and inflammatory adjuvants. Technol Cancer Res Treat. 2004; 3(2):103-11. CrossRef

Han X, Ma HB, Wilson C, Crister JK. Effects of nanoparticles on the nucleation and devitrification temperatures of polyol cryoprotectant solutions. Microfluidics and nanofluidics. 2008; 4(4): 357-61. CrossRef

Hao B, Liu B. Thermal properties of PVP cryoprotectants with nanoparticles. J Nanotechnol Eng Med. [Internet]. 2011 May 19 [cited 15.10.2019]; 2(2): 021015. Available from: CrossRef

He X, Bischof JC. Multiscale technologies for cryomedicine: implementation from nano to macroscale. Singapore: World Scientific; 2016. 374 р CrossRef

Hrechyshnikova MP, Goloyad MA, Lipina OV, et al. Application of solutions of cerium dioxide and gadolinium orthovanadate nanosized particles in hypothermic storage of spirulina platensis cell culture. Probl Cryobiol Cryomed. 2018; 28(2):173. CrossRef

Isaac AV, Kumari S, Nair R, et al. Supplementing zinc oxide nanoparticles to cryopreservation medium minimizes the freeze-thaw-induced damage to spermatozoa. Biochem Biophys Res Commun. 2017; 494(3-4): 656-62. CrossRef

Jana S, Salehi-Khojin A, Zhong WH. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta. 2007; 462 (1-2): 45-55. CrossRef

Jansen MC, van Hillegersberg R, Schoots IG, et al. Cryoablation induces greater inflammatory and coagulative responses than radiofrequency ablation or laser induced thermotherapy in a rat liver model. Surgery. 2010; 147(5): 686-95. CrossRef

Jiang J, Goel R, Schmechel S, et al. Pre-conditioning cryosurgery: cellular and molecular mechanisms and dynamics of TNF-α enhanced cryotherapy in an in vivo prostate cancer model system. Cryobiology. 2010; 61(3): 280-8. CrossRef

Kang HU, Kim SH, Oh JM. Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Experimental Heat Transfer. [Internet]. 2006 Sep 1; [cited 10.10.2019] 19 (3): 181-91. Available from: CrossRef

Keblinski P, Phillpot SR, Choi SUS, Eastman JA. Mechanism of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transfer. 2002; 45 (4): 855-63. CrossRef

Khalil WA, El-Harairy MA, Zeidan AEB, Hassan MAE. Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation. Theriogenology. 2019; 126: 121-7. CrossRef

Khosla K, Wang Y, Hagedorn M, et al. Gold nanorod induced warming of embryos from the cryogenic state enhances viability. ACS Nano. 2017; 11(8):7869-78. CrossRef

Kirdaite G, Leonaviciene L, Bradunaite R, et al. Antioxidant effects of gold nanoparticles on early stage of collagen-induced arthritis in rats. Res Vet Sci. 2019; 124: 32-7. CrossRef

Kobayashi A, Golash HN, Kirschvink JL. A first test of the hypothesis of biogenic magnetite-based heterogeneous ice-crystal nucleation in cryopreservation. Cryobiology. 2016; 72(3): 216-24. CrossRef

Li WJ, Zhou XL, Liu BL, et al. Effect of nanoparticles on the survival and development of vitrified porcine GV oocytes. CryoLetters. 2016; 37(6): 401-5.

Liu J, Deng Z-S. Nano-cryosurgery: advances and challenges. J Nanosci Nanotechnol. 2009; 9(8): 4521-42. CrossRef

Liu MS, Lin MC, Tsai CY, Wang CC. Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transfer. 2006; 49 (17-18): 3028-33. CrossRef

Lv F, Liu B, Li W, Jaganathan GK. Devitrification and recrystallization of nanoparticle-containing glycerol and PEG-600 solutions. Cryobiology. 2014; 68(1): 84-90. CrossRef

Manuchehrabadi N, Gao Z, Zhang J, et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticle. Sci Transl Med. [Internet]. 2017 Mar 1 [cited 15.10.2019]; 9 (379): eaah4586. Available from: CrossRef

Marin-Guzman J, Mahan D, Whitmoyer R. Effect of dietary selenium and vitamin E on the ultrastructure and ATP concentration of boar spermatozoa, and the efficacy of added sodium selenite in extended semen on sperm motility. J Anim Sci. 2000; 78(6): 1544-50. CrossRef

Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon Press; 1881. 435 p.

Montiel Schneider MG, Martin MJ, Coral DF, et al. Selective contrast agents with potential to the earlier detection of tumors: Insights on synthetic pathways, physicochemical properties and performance in MRI assays. Colloids Surf B Biointerfaces. 2018; 170: 470-8. CrossRef

Oliver AE, Jamil K, Crowe JH, Tablin F. Loading human mesenchymal stem cells with trehalose by fluid-phase endocytosis. Cell Preserv Technol. 2004; 2(1): 35-49. CrossRef

Patel HE, Das SK, Sundararajan T, et al. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett. [Internet]. 2003 September 30 [cited 10.10.2019]; 83:2931. Available from: CrossRef

Pavlovich EV, Volkova NA. Influence of gold nanoparticles on human fibroblast before and after cryopreservation. In: Fesenko O, Yatsenko L, editors. Nanoplasmonics, nano-optics, nanocomposites, and surface studies. Cham: Springer International Publishing; 2015. p. 413-20. CrossRef

Rao W, Huang H, Wang H, et al. Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant. ACS Appl Mater Interfaces. 2015; 7(8): 5017-28. CrossRef

Robilotto AT, Baust JM, Van Buskirk RG, et al. Temperature-dependent activation of differential apoptotic pathways during cryoablation in a human prostate cancer model. Prostate Cancer Prostatic Dis. 2013; 16(1): 41-9. CrossRef

Safa S, Moghaddam G, Jozani RJ, et al. Effect of vitamin E and selenium nanoparticles on post-thaw variables and oxidative status of rooster semen. Anim Reprod Sci. 2016; 174:100-6. CrossRef

Sanjay SS, Pandey AC, Kumar S, Pandey AK. Cell membrane protective efficacy of ZnO nanoparticles. SOP Trans Nano-tech. 2014; 1(1): 21-9. CrossRef

Shcherbakov АB, Zholobak NМ, Ivanov VК, et al. [Nanomaterials based on the nanocrystalline ceric dioxode: properties and use perspectives in biology and medicine]. Biotekhnolohiia. 2011; 4 (1): 9-28. Russian.

Stefanic M, Ward K, Tawfik H, et al. Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Biomaterials. 2017; 140: 138-49. CrossRef

Thomé S, Craze J, Mitchell C. Dimethylsulfoxide-induced serum hyperosmolality after cryopreserved stem-cell graft. Lancet. 1994; 344(8934): 1431-2. CrossRef

Wang B, Liu G, Balamurugan V, et al. Apatite nanoparticles mediate intracellular delivery of trehalose and increase survival of cryopreserved cells. Cryobiology. 2019; 86: 103-10. CrossRef

Wang J, Zhao G, Zhang Z, et al. Magnetic induction heating of superparamagnetic nanoparticles during rewarming augments the recovery of hUCM-MSCs cryopreserved by vitrification. Acta Biomater. 2016; 33: 264-74. CrossRef

Wang L, Fan J. Toward nanofluids of ultra-high thermal conductivity. Nanoscale Res Lett. [Internet]. 2011 Feb 18 [cited 10. 10. 2019]; 6 (1): 153. Available from: CrossRef

Wang T, Zhao G, Liang XM, Xu YP. Numerical simulation of the effect of superparamagnetic nanoparticles on microwave rewarming of cryopreserved tissues. Cryobiology. 2014; 68(2): 234-43. CrossRef

Warrier P, Teja A. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res Lett. [Internet]. 2011 Mar 22; [cited 09.09.2019]; 6(1): 247. Available from: CrossRef

Wu Z, Chen J, Sun Y, et al. Tumor microenvironment-response calcium phosphate hybrid nanoparticles enhanced sirnas targeting tumors in vivo. J Biomed Nanotechnol. 2018; 14(10): 1816-25. CrossRef

Xie H, Fujii M, Zhang X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transfer. 2005; 48(14): 2926-32. CrossRef

Xu Y, Yu HM, Niu YQ, Luo S.C, Cheng X. Effects of superparamagnetic nanoparticles on nucleation and crystal growth in the vitrified VS55 during warming. CryoLetters. 2016; 37(6): 448-54.

Yan J-F, Liu J. Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues. Nanomedicine. 2008; 4(1): 79-87. CrossRef

Ye P, Kong Y, Chen Xi, Li W. et al. Fe3O4 nanoparticles and cryoablation enhance ice crystal formation to improve the efficiency of killing breast cancer cells. Oncotarget. 2017; 8(7): 11389-99. CrossRef

Yi J, Tang H, Zhao G. Influence of hydroxyapatite nanoparticles on the viscosity of dimethyl sulfoxide-H2O-NaCl and glycerol-H2O-NaCl ternary systems at subzero temperatures. Cryobiology. 2014; 69(2): 291-8. CrossRef

Yi J, Zhao G. Effect of hydroxyapatite nanoparticles on biotransport phenomena in freezing HeLa cells. J Nanotechnol Eng Med. [Internet]. 2014 November 1 [cited 15.10.2019]; 5(4): 040904. Available from:

Yu TH, Liu J, Zhou YX. Selective freezing of target biological tissues after injection of solutions with specific thermal properties. Cryobiology. 2005; 50(2): 174-82. CrossRef

Zhang W, Gilstrap K, Wu L, et al. Synthesis and characterization of thermally responsive pluronic F127-chitosan nanocapsules for controlled release and intracellular delivery of small molecules. ACS Nano. 2010; 4(11): 6747-59. CrossRef

Zhang W, Rong J, Wang Q, He X. The encapsulation and intracellular delivery of trehalose using a thermally responsive nanocapsule. Nanotechnology [Internet]. 2009 Jun 16 [cited 14.11.2019]; 20(27): 275101. Available from: CrossRef

Zhou X, Li W, Zhang D, Dai J. Hydroxyapatite nanoparticles improved survival rate of vitrified porcine oocytes and its mechanism. CryoLetters. 2015; 36(1): 45-50.

Zhou XL, Yuan J, Liu JF, Liu BL. Loading trehalose into red blood cells by electroporation and its application in freeze-drying. CryoLetters. 2010; 31(2): 147-56.




How to Cite

Goltsev, A., Bondarovych, M., Babenko, N., Gaevska, Y., Dubrava, T., & Ostankov, M. (2020). Use of Nanomaterials in Cryobiology and Cryomedicine. Problems of Cryobiology and Cryomedicine, 30(4), 313–330.