Cryoresistance Differences Between Species of Autotrops From Polar Regions Sensed by Chlorophyll Fluorescence


  • Anton Puhovkin Masaryk University, Department of Experimental Biology, Brno, Czech Republic; Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine; State Institution National Antarctic Scientific Centre of the Ministry of Education and Science, Kyiv, Ukraine
  • Josef Hájek Masaryk University, Brno
  • Davide Giordano Masaryk University, Brno
  • Jiři Sekerák Masaryk University, Brno
  • Miloš Bartak Masaryk University, Brno



chlorophyll fluorescence, cooling, cryoresistance, lichens, cyanobacteria, polar regions, photosystem II, photosynthesis


Lichens from the cold regions of Earth exhibit high, but different degree of tolerance to drought and freeze stresses. Therefore, three lichen species Xanthoria elegans, Umbilicaria cylindrica, Usnea sphacelata, and a representative of extremophilic cyanobacteria Nostoc commune were selected to measure temperature response curves of chlorophyll fluorescence parameters in cooling experiment using a constant rate of cooling from 20 to –45°C. Two chlorophyll fluorescence parameters (FV/FM – potential yield of photosynthetic processes in photosystem II and ΦPSII – effective quantum yield) were measured with a modulated fluorometer. For all experimental species, the temperature-response curves of II FV/FM and ΦPSII showed typical triphasic shape: plateau (temperature decrease from 20 to –5°C), decline, and a shoulder reaching the critical point. The phase typically formed a S-curve of different shape as dependent on species and chlorophyll fluorescence parameter. U. cylindrica was the most cryoresistant in terms of photosynthetic processes ongoing in thylakoid membrane of chloroplast at below zero temperature.

Probl Cryobiol Cryomed 2023; 33(1):025–037


Author Biographies

Josef Hájek, Masaryk University, Brno

Department of Experimental Biology

Davide Giordano, Masaryk University, Brno

Department of Experimental Biology

Jiři Sekerák, Masaryk University, Brno

Department of Experimental Biology

Miloš Bartak, Masaryk University, Brno

Department of Experimental Biology


Bacior M, Harańczyk H, Nowak P, et al. Low-temperature immobilization of water in Antarctic Turgidosculum complicatulum and in Prasiola crispa. Part I. Turgidosculum complicatulum. Colloids and Surfaces B: Biointerfaces. 2019; 173: 869-75. CrossRef

Backhaus T, de la Torre R, Lyhme K, et al. Desiccation and low temperature attenuate the eff ect of UVC254 nm in the photobiont of the astrobiologically relevant lichens Circinaria gyrosa and Buellia frigida. Int J Astrobiol. 2015; 14(3): 479-88. CrossRef

Barták M, Váczi P, Hájek J, Smykla J. Low-temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria antarctica and Xanthoria elegans. Polar Biol. 2007; 31(1): 47-51. CrossRef

Barták M, Vráblíková H, Hájek J. Sensitivity of photosystem 2 of Antarctic lichens to high irradiance stress: Fluorometric study of fruticose (Usnea antarctica) and foliose (Umbilicaria decussata) species. Photosynthetica. 2003; 41(4): 497-504. CrossRef

Bjerke JW, Bokhorst S, Zielke M, et al. Contrasting sensitivity to extreme winter warming events of dominant sub-Arctic heathland bryophyte and lichen species. J Ecol. 2011; 99(6): 1481-8. CrossRef

Bjerke JW. Ice encapsulation protects rather than disturbs the freezing lichen. Plant Biol. 2009; 11(2): 227-35. CrossRef

Buriak I, Fleck RA, Goltsev A, et al. Translation of cryobiological techniques to socially economically deprived populations. Part 1: Cryogenic preservation strategies. J. Med. Devices. 2020; 14(1): 010801 EN. CrossRef

Colesie C, Büdel B, Hurry V, Green TG. Can Antarctic lichens acclimatize to changes in temperature? Global Change Biol. 2018; 24(3): 1123-35. CrossRef

Ensminger I, Busch F, Huner NP. Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant. 2006; 126(1): 28-44. CrossRef

Folgar-Cameán Y, Barták M. Evaluation of photosynthetic processes in Antarctic mosses and lichens exposed to controlled rate cooling: Species-specific responses. Czech Polar Reports. 2019; 9(1): 114-24. CrossRef

Hájek J, Barták M, Dubová J. Inhibition of photosynthetic processes in foliose lichens induced by temperature and osmotic stress. Biol Plant. 2006; 50(4): 624-34. CrossRef

Hájek J, Barták M, Hazdrová J, Forbelská M. Sensitivity of photosynthetic processes to freezing temperature in extremophilic lichens evaluated by linear cooling and chlorophyll fluorescence. Cryobiology. 2016; 73(3): 329-34. CrossRef

Hájek J, Hojdová A, Trnková K, et al. Responses of thallus anatomy and chlorophyll fluorescence-based photosynthetic characteristics of two Antarctic species of genus Usnea to low temperature. Photosynthetica. 2021; 59(1): 95-105. CrossRef

Hájek J, Váczi P, Barták M, Jahnová L. Interspecific differences in cryoresistance of lichen symbiotic algae of genus Trebouxia assessed by cell viability and chlorophyll fluorescence. Cryobiology. 2012; 64(3): 215-22. CrossRef

Hájek J, Váczi P, Barták M. Photosynthetic electron transport at low temperatures in the green algal foliose lichens Lasallia pustulata and Umbilicaria hirsuta affected by manipulated levels of ribitol. Photosynthetica. 2009; 47(2): 199-205. CrossRef

Harańczyk H, Casanova-Katny A, Olech M, Strzalka K. Dehydration and freezing resistance of lichenized fungi. In: Shukla V, Kumar S, Kumar N, editors. Plant adaptation strategies in changing environment. Singapore: Springer; 2017. p. 77-102. CrossRef

Harańczyk H, Grandjean J, Olech M. Low temperature effect in D2O-hydrated Antarctic lichen Himantormia lugubris as observed by 1H NMR. Molec Phys Rep. 2001; 33: 220-24.

Harańczyk H, Grandjean J, Olech M, Michalik M. Freezing of water bound in lichen thallus as observed by 1H NMR. II. Freezing protection mechanisms in a cosmopolitan lichen Cladonia mitis and in Antarctic lichen species at different hydration levels. Colloids Surf B Biointerfaces. 2003; 28(4): 251-60. CrossRef

Harańczyk H, Nowak P, Bacior M, et al. Bound water freezing in Umbilicaria aprina from continental Antarctica. Antarct Sci. 2012; 24(4): 342-52. CrossRef

Hüner NP, Smith DR, Cvetkovska M, et al. Photosynthetic adaptation to polar life: Energy balance, photoprotection and genetic redundancy. J Plant Physiol [Internet]. 2022 Jan 1 [cited 2022Nov 25]; 268: 153557. Available from: CrossRef

Marečková M, Barták M, Hájek J. Temperature effects on photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum: a chlorophyll fluorescence study. Polar Biol. 2019; 42(4): 685-701. CrossRef

Míguez F, Schiefelbein U, Karsten U, et al. Unraveling the photoprotective response of lichenized and free-living green algae (Trebouxiophyceae, Chlorophyta) to photochilling stress. Front Plant Sci [Internet]. 2017 Jul 4 [cited 2022 Nov 25]; 8: 1144. Available from: CrossRef

Mishra A, Hájek J, Tuháčková T, et al. Features of chlorophyll fluorescence transients can be used to investigate low temperature induced effects on photosystem II of algal lichens from polar regions. Czech Polar Reports. 2015; 5(1): 99-111. CrossRef

Noetzel RD, Sancho LG. Lichens as astrobiological models: experiments to fathom the limits of life in extraterrestrial environments. Extremophiles as Astrobiological Models. 2020; 20: 197-220. CrossRef

Ȍquist, G, Huner NPA. Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol. 2003; 54: 329-55. CrossRef

Pannewitz S, Green TA, Schlensog M, et al. Photosynthetic performance of Xanthoria mawsonii CW Dodge in coastal habitats, Ross Sea region, continental Antarctica. Lichenologist. 2006; 38(1): 67-81. CrossRef

Paoli L, Munzi S, Pisani T, et al. Freezing of air-dried samples of the lichen Evernia prunastri (L.) Ach. ensures that thalli remain healthy for later physiological measurements. Plant Biosyst - Intl J Dealing Aspects Plant Biol. 2013; 147(1): 141-4. CrossRef

Puhovkin A, Bezsmertna O, Parnikoza I. Interspecific differences in desiccation tolerance of selected Antarctic lichens: Analysis of photosystem II effectivity and quenching mechanisms. Czech Polar Reports. 2022; 12(1): 31-43. CrossRef

Šabacká, M., Elster, J. Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biol. 2006; 30: 31-7. CrossRef

Sadowsky A, Ott S. Photosynthetic symbionts in Antarctic terrestrial ecosystems: the physiological response of lichen photobionts to drought and cold. Symbiosis. 2012; 58(1): 81-90. CrossRef

Sancho LG, de la Torre R, Pintado A. Lichens, new and promising material from experiments in astrobiology. Fungal Biol Rev. 2008; 22(3-4): 103-9. CrossRef

Sancho LG, Pintado A, Green TA. Antarctic studies show lichens to be excellent biomonitors of climate change. Diversity [Internet]. 2019 Mar 19 [cited 2022 Nov 25]; 11(3): 42. Available from: CrossRef

Sancho LG, Pintado A, Navarro F, et al. Recent warming and cooling in the Antarctic Peninsula region has rapid and large effects on lichen vegetation. Sci Rep [Internet]. 2017 Jul 24 [cited 2022Nov 25]; 7(1): 1-8. Available from: CrossRef

Schofield SC, Campbell DA, Funk C, MacKenzie TD. Changes in macromolecular allocation in nondividing algal symbionts allow for photosynthetic acclimation in the lichen Lobaria pulmonaria. New Phytol. 2003; 159(3): 709-18. CrossRef

Solhaug KA, Chowdhury DP, Gauslaa Y. Short-and longterm freezing effects in a coastal (Lobaria virens) versus a widespread lichen (L. pulmonaria). Cryobiology. 2018; 82: 124-9. CrossRef

de Vera JP, Schulze-Makuch D, Khan A, et al. Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planet Space Sci. 2014; 98: 182-90. CrossRef




How to Cite

Puhovkin, A., Hájek, J., Giordano, D., Sekerák, J., & Bartak, M. (2023). Cryoresistance Differences Between Species of Autotrops From Polar Regions Sensed by Chlorophyll Fluorescence. Problems of Cryobiology and Cryomedicine, 33(1), 025–037.



Theoretical and Experimental Cryobiology