Skin Stem Cells as an Object for Cryopreservation. 1. Skin Stem Reserve

Authors

  • Nataliya A. Volkova Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov
  • Svetlana P. Mazur Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
  • Vitaliy S. Kholodnyy Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
  • Aleksandr Yu. Petrenko Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

DOI:

https://doi.org/10.15407/cryo24.01.003

Keywords:

skin, stem cells, epithelium, derma, subcutaneous fat, melanocytes

Abstract

The review contains the data on scope, properties and localization of resident stem/progenitor cells of skin. The emphasis is given to populations of epithelial and dermal stem cells (SCs), as well as of melanocyte and subcutaneous fat SCs. The cells represent a prospective object for cryobiological technologies and establishing low temperature banks for use in theoretical and experimental biology, general and personalized medicine, development of bioengineered equivalents of tissues and artificial organs.


Probl Cryobiol Cryomed 2014; 24(1):3–15.

Author Biographies

Nataliya A. Volkova, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov

Department of Cryobiochemistry

Svetlana P. Mazur, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryobiochemistry

Vitaliy S. Kholodnyy, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Low Temperature Preservation

Aleksandr Yu. Petrenko, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryobiochemistry

References

Alonso L., Fuchs E. Stem cells of skin epithelium. Proc Natl Acad Sci USA 2003; 100(Suppl 1): 11830–11835. CrossRef PubMed

Bajpai V.K., Mistriotis P., Andreadis S.T. Clonal multipotency and effect of long-term in vitro expansion on differentiation potential of human hair follicle derived mesenchymal stem cells. Stem Cell Res 2012; 8(1): 74–84. CrossRef PubMed

Bardin N., Anfosso F., Masse J.M. et al. Identification of CD146 as a component of the endothelial junction involved in the control of cell-cell cohesion. Blood 2001; 98: 3677–3684. CrossRef PubMed

Bartsch G., Yoo J.J., De Coppi P. et al. Propagation, expansion, and multilineage differentiation of human somatic stem cells from dermal progenitors. Stem Cells Dev 2005; 14(3): 337–348. CrossRef PubMed

Biernaskie J., Paris M., Morozova O. et al. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell 2009; 5(6): 610–623. CrossRef PubMed

Blanpain C., Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 2006; 22: 339–373. CrossRef PubMed

Blanpain C., Lowry W.E., Geoghegan A. et al. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 2004; 118(5): 635–638. CrossRef PubMed

Clayton E., Doupe D.P., Klein A.M. et al. A single type of progenitor cell maintains normal epidermis. Nature 2007; 446(7132): 185–189. CrossRef PubMed

Crisan M., Yap S., Casteilla L. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3(3): 301–313. CrossRef PubMed

Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The Inter-national Society for Cellular Therapy position statement.Cytotherapy 2006; 8(4): 315–317. CrossRef PubMed

Driskell R.R., Clavel C., Rendl M., Watt F.M. Hair follicle dermal papilla cells at a glance. J Cell Sci 2011; 124: 1179–1182. CrossRef PubMed

Fernandes K.J.L., Toma J.G., Miller F.D. Multipotent skin-derived precursors: adult neural crest-related precursors with therapeutic potential. Phil Trans R Soc B 2008; 363(1489): 185–198. CrossRef PubMed

Festa E., Fretz J., Berry R. et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 2011; 146(5): 761–771. CrossRef PubMed

Friedenstein A.J., Shapiro-Piatetzky I.I., Petrakova K.V. Osteogenesis in transplants of bone marrow cells. J Embryol Exp. Morphol 1966; 16(3): 381–390. PubMed

Fuchs E., Horsley V. More than one way to skin… Genes Dev 2008; 22(8): 976–985. CrossRef PubMed

Grischenko V.I., Goltsev A.N., Shchegelskaya Ye.A. et al. Cryopreservation of stem cells. Dosyagnennya Biologii ta Medytsyny 2006; 7(1): 4–9.

Hsu Y.C., Pasolly H.A., Fuchs E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 2011; 144(1): 92–105. CrossRef PubMed

Li L., Fukunaga-Kalabis M., Yu H. et al. Human dermal stem cells differentiate into functional epidermal melanocytes. J Cell Sci 2010; 23(6): 853–860. CrossRef PubMed

Lin C.S., Xin Z.C., Deng C.H. et al. Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol 2010; 25(6): 807–815. PubMed

Lin G., Garcia M., Ning H. et al. Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 2008; 17(6): 1053–1063. CrossRef PubMed

Mizuno H., Tobita M., Uysal A.C. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 2012; 30(5): 804–810. CrossRef PubMed

Petrenko A.Yu., Khunov Yu.A., Ivanov E.N. Stem cells. Features and perspectives of clinical application. Lugansk; 2011.

Petrenko Yu.O., Dombrovsky D.B., Salyutin R.V. et al. Capillary structure formation by cultivated human stromal cells from fatty tissue and fetal liver. Acta Medica Leopoliensia 2010; 16(1): 40–45.

Prunet-Marcassus B., Cousin B., Caton D. et al. From heterogeneity to plasticity in adipose tissues: Site-specific differences. Exp Cell Res 2006; 312(6): 727–736. CrossRef PubMed

Sarin K.Y., Artandi S.E. Aging, graying and loss of melanocyte stem cells. Stem Cell Rev 2007; 3(3): 212–217. CrossRef

Sellheyer K., Krahl D. Skin mesenchymal stem cells: prospects for clinical dermatology. J Am Acad Dermatol 2010; 63(5): 859–865. CrossRef PubMed

Sorrell J.M., Baber M.A., Caplan A.I. Clonal characterization of fibroblasts in the superficial layer of the adult dermis. Cell Tissue Research 2007; 327(3): 499–510. CrossRef PubMed

Toma J.G., Akhavan M., Fernandes K.J. et al. Isolation of multi-potent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 2001; 3(9): 778–784. CrossRef PubMed

Toma J.G., McKenzie I.A., Bagli D., Miller F.D. Isolation and characterization of multipotent skin–derived precursors from human skin. Stem Cells 2005; 23(6): 727–737. CrossRef PubMed

Thomas A.J., Erickson C.A. The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res 2008; 21(6): 598–610. CrossRef PubMed

Traktuev D.O., Merfeld-Clauss S., Li J. et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 2008; 102(1): 77–85. CrossRef PubMed

Turksen K., editor. Skin stem cells. Totowa, NJ: Humana Press; 2013.

Vaculik C., Schuster C., Bauer W. et al. Human dermis harbors distinct mesenchymal stromal cell subsets. J Invest Dermatol 2012; 132(3): 563–574. CrossRef PubMed

Vishnubalaji R., Al-Nbaheen M., Kadalmani B. et al. Skin-derived multipotent stromal cells – an archrival for mesenchymal stem cells. Cell Tissue Res 2012; 350(1): 1–12. CrossRef PubMed

Wong V.W., Levi B., Rajadas J. et al. Stem cell niches for skin regeneration. International Journal of Biomaterials 2012; Article ID 926059. CrossRef

Yamanishi H., Fujiwara S., Soma T. Perivascular localization of dermal stem cells in human scalp. Exp Dermatol 2012; 21(1): 78–80. CrossRef PubMed

Yang L., Peng R. Unveiling hair follicle stem cells. Stem Cell Rev 2010; 6(4): 658–664. CrossRef PubMed

Yang X., Moldovan N.I., Zhao Q. et al. Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells. Mol Vis 2008; 14: 1064–1070. PubMed

Yang Y.I., Kim H.I., Choi M.Y. et al. Ex vivo organ culture of adipose tissue for in situ mobilization of adipose-derived stem cells and defining the stem cell niche. J Cell Physiol 2010; 224(3): 807–816. CrossRef PubMed

Zimmerlin L., Donnenberg V.S., Pfeifer M.E. et al. Stromal vascular progenitors in adult human adipose tissue. Cytometry A 2010; 77(1): 22–30. PubMed

Zimmerlin L., Donnenberg V.S., Rubin J.P., Donnenberg A.D. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A 2013; 83(1): 134–140. CrossRef PubMed

Zong Z., Li N., Ran X., Su Y. et al. Isolation and characterization of two kinds of stem cells from the same human skin back sample with therapeutic potential in spinal cord injury. PLoS One 2012; 7(11): e50222. CrossRef PubMed

Zuk P.A., Zhu M., Mizuno H. et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 2001; 7(2): 211–228. CrossRef PubMed

Downloads

Published

2014-03-25

How to Cite

Volkova, N. A., Mazur, S. P., Kholodnyy, V. S., & Petrenko, A. Y. (2014). Skin Stem Cells as an Object for Cryopreservation. 1. Skin Stem Reserve. Problems of Cryobiology and Cryomedicine, 24(1), 3–15. https://doi.org/10.15407/cryo24.01.003