Expression of ido Gene in Fetal Liver Mesenchymal Stem Cells Following Cryopreservation

Authors

  • Anatoliy N. Goltsev Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov
  • Aleksey Yu. Dimitrov Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov
  • Yuliya A. Gayevskaya Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov
  • Tatyana G. Dubrava Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov
  • Natalia N. Babenko Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov
  • Elena D. Lutsenko Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov
  • Maksim V. Ostankov Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov

DOI:

https://doi.org/10.15407/cryo24.01.016

Keywords:

fetal liver, mesenchymal stem cells, cryopreservation, indoleamine-2, 3-dioxygenase, ido gene

Abstract

The study was conducted to assess the effect of gestation term and cryopreservation factors on some functional parameters of mesenchymal stem cells (MSCs) in fetal liver (FL), in particular, ido gene expression rate. Expression rate of ido gene was decreased between 14th to 18th days of FL gestation. Following cryopreservation the expression rate of ido gene in FL cells of 18th gestation day increased significantly, and this level exceeded significantly the one in non-frozen samples of the 14th and 18th gestation day. This fact emphasizes the ability of cryopreservation to implement the ‘revitalizing’ effect in respect of FL cells of late gestation terms. Thus, cryopreservation can be used as the method of specific enhancing of MSCs immune modulating activity.


Probl Cryobiol Cryomed 2014; 24(1):16–27.

Author Biographies

Anatoliy N. Goltsev, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov

Department of Cryopathophysiology and Immunology

Aleksey Yu. Dimitrov, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov

Department of Cryopathophysiology and Immunology

Yuliya A. Gayevskaya, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov

Department of Cryopathophysiology and Immunology

Tatyana G. Dubrava, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov

Department of Cryopathophysiology and Immunology

Natalia N. Babenko, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov

Department of Cryopathophysiology and Immunology

Elena D. Lutsenko, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov

Department of Cryopathophysiology and Immunology

Maksim V. Ostankov, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkov

Department of Cryopathophysiology and Immunology

References

Angelo P.C., Ferreira A.C.S., Fonseca V.D. Cryopreservation does not alter karyotype, multipotency, or NANOG/SOX2 gene expression of amniotic fluid mesenchymal stem cells. Genet Mol Res 2012; 11(2): 1002–1012. CrossRef PubMed

Augello A., Kurth T.B., De Bari C. Mеsenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niche. Eur Cell Mater 2010; 20: 121–133.

Baust J., Van Buskirk R., Baust G. Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell Dev Biol Anim 2000; 36(4): 262–270. CrossRef

Boasso A., Herbeuval J.P., Hardy A.W. et al. Regulation of indoleamine-2,3-dioxygenase and tryptophanyl-tRNA- synthetase by CTLA- 4-Fc in human CD4+ T cells. Blood 2005; 105(4): 1574–1581. CrossRef PubMed

Conget P.A., Minguell J.J. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 1999; 181(1): 67–73. CrossRef

Croitoru-Lamoury J., Lamoury F.M.J., Caristo M. et al. Interferon-g regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine-2,3- dioxygenase (IDO). PLoS ONE 2011; 6(2): e14698.

Deans R.J., Moseley A.B. Mesenchymal stem cells: Biology and potential clinical uses. Exp Hematol 2000; 28(8): 875–884. CrossRef

Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315–317.

CrossRef PubMed

Dіmіtrov O.Yu., Borisov P.O., Chelombitko O.V. Comparison of mesenchymal stem cell content and ido gene expression level in murine fetal liver of different gestation term. In: Youth and Progress in Biology. Proceedings of VIII International Conference; Lviv, Ukraine; Lviv, 2012: p. 343–344.

Fallarino F., Grohmann U., Vacca C. et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ 2002; 9(10): 1069–1077. CrossRef PubMed

Fallarino F., Grohmann U., You S. et al. The Ñombined еffects of tryptophan starvation and tryptophan catabolites down- regulate T cell receptor z-chain and induce a regulatory phenotype in naive T cells. J Immunol 2006; 176(11): 6752–6761. CrossRef PubMed

Francois M., Copland I.B., Yuan S. et al. Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-g licensing. Cytotherapy 2012; 14(2): 147–152. CrossRef PubMed

Friedenstein A.Y., Lalykina K.S. Induction of bone tissue and osteogenic progenitors. Moscow: Meditsina; 1973.

Fuller B.J. Gene expression in response to low temperatures in mammalian cells: a review of current ideas. CryoLetters 2003; 24(2): 95–102.

Ghodsi M., Heshmat R., Amoli M. et al. The effect of fetal liver-derived cell suspension allotransplantation on patients with diabetes: first year of follow-up. Acta Medica Iranica 2012; 50(8): 541–546.

Goltsev A.N., Grischenko V.I., Sirous M.A. et al. Cryopreservation: an optimizing factor for therapeutic potential of feto-placental complex products. Biopreservation and Biobanking 2009; 7(1): 29–38. CrossRef PubMed

Goltsev A.N., Dubrava T.G., Lutsenko E.D. et al. The level of gata2 and ido gene expression in stem cells of cryopreserved fetal liver of different gestation terms. Tavricheskiy Mediko-Biologicheskiy Vestnik 2012; 15(3), Part 2: 81–83.

Goltsev A.N., Dubrava T.G., Lutsenko E.D. et al. Manifestation of immunocorrective effect of cryopreserved fetal liver cells of different gestation terms during development of experimental graft-versus-host response. Cell Transplantation and Tissue Engineering 2010; (3): 82–86.

Goltsev A.N., Dubrava T.G., Ostankova L.V. et al. Peculiarities of cryopreservation effect on functional potential of fetal liver hemopoietic stem cells of various gestation terms. Problems of Cryobiology 2009; 19(2): 186–199.

Goltsev A.N., Lutsenko E.D., Dimitrov A.Yu. et al. Peculiarities of functional state modulation of genetic apparatus of fetal liver cells with stemness characteristics after cryopreservation. CryoLetters 2011; 32(6): 543–544.

Goltsev A.N., Ostankova L.V., Dubrava T.G. et al. Cryo-preservation as a modifying factor of structure and function state and mechanism of therapeutic effect implementation of stem cells under development of autoimmune pathologies. In: Goltsev A.N., editor. Current problems of cryobiology and cryomedicine. Kharkov; 2012: p. 501–612.

Goltsev A.N., Ostankova L.V., Lutsenko E.D. et al. Functional activity of cryopreserved cells (CFUs), depending on the myelotransplant composition. Problems of Cryobiology 1993; (4): 34–39.

Gottwald E., Muller O., Polten A. Semiquantitative reverse transcription- polymerase chain reaction with the Agilent 2100 Bioanalyzer. Electrophoresis 2001; 22(16): 4016–4022. CrossRef

Harrington, S., McGee J. Molecular clinical diagnostics. New York: Wiley; 1999.

Jarocha D., Lukasiewicz E., Majka M. Advantage of mesenchymal stem cells (MSC) expansion directly from purified bone marrow CD105+ and CD271+ cells. Folia Histochem Cytobiol 2008; 46(3): 307–314. CrossRef PubMed

Kedersha N., Anderson P. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 2002; 30(6): 963–969. CrossRef

King N.J., Thomas S.R. Molecules in focus: Indoleamine 2,3- dioxygenase. Int J Biochem Cell Biol 2007; 39(12): 2167–2172. CrossRef PubMed

Kiseleva Ye.P., Krylov A.V., Starikova E.A., Kuznetsova S.A. Vascular endothelial growth factor and the immune system. Uspekhi Sovr. Biologii 2009; 129(4): 1–12.

Le Blanc K., Frassoni F., Ball L. et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft- versus-host disease: a phase II study. Lancet 2008; 371(9624): 1579–1586. CrossRef

Ligam P., Manuelpillai U., Wallace E.M., Walker D. Localisation of indoleamine 2,3-dioxygenase and kynurenine hydroxylase in the human placenta and decidua: implications for role of the kynurenine pathway in pregnancy. Placenta 2005; 26(6): 498–504. CrossRef PubMed

Liu K., Yang Y., Mansbridge J. Comparison of the stress response to cryopreservation in monolayer and three- dimensional human fibroblast cultures: stress proteins, MAP kinases, and growth factor gene expression. Tissue Eng 2000; 6(5): 539–554. CrossRef PubMed

Mamidi M. K., Nathan K. G., Singh G. Comparative cellular and molecular analyses of pooled bone marrow multipotent mesenchymal stromal cells during continuous passaging and after successive cryopreservation. J Cell Biochem 2012; 113(10): 3153–3164. CrossRef PubMed

Martinello T., Bronzini I., Maccatrozzo L. et al. Cryopreservation does not affect the stem characteristics of multipotent cells isolated from equine peripheral blood. Tissue Eng Part C Methods 2010; 16(4): 771–781.

CrossRef PubMed

Mellor A.L., Chandler P., Lee G.K. et al. Indoleamine-2,3- dioxygenase, immunosupression and pregnancy. J Reprod Immunol 2002; 57(1–2): 143–150.

Naaldijk Y., Staude M., Fedorova V. et al. Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide. BMC Biotechnology 2012; 12: 49–59. CrossRef PubMed

Newman R.E., Yoo D., LeRoux M.A., Danilkovitch-Miagkova A. Treatment of inflammatory diseases with mesenchymal stem cells. Inflamm Allergy Drug Targets 2009; 8(2): 110–123. CrossRef PubMed

Rombouts W.J.C., Ploemacher R.E. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 2003; 17(1): 160–170. CrossRef PubMed

Woods E.J., Liu J., Pollok K. et al. A theoretically optimized method for cord blood stem cell cryopreservation. J Hema-tother Stem Cell Res 2003; 12(3): 341–350. CrossRef PubMed

Yadav M.C., Burudi E.M., Alirezaei M. et al. IFN gamma-induced IDO and WRS expression in microglia is differentially regulated by IL-4. Glia 2007; 55(13): 1385–1396. CrossRef PubMed

Zhang S., Qian H., Wang Z. et al. Preliminary study on the freeze-drying of human bone marrow-derived mesenchymal stem cells. J Zhejiang Univ Sci B 2010; 11(11): 889–894. CrossRef PubMed

Downloads

Published

2014-03-25

How to Cite

Goltsev, A. N., Dimitrov, A. Y., Gayevskaya, Y. A., Dubrava, T. G., Babenko, N. N., Lutsenko, E. D., & Ostankov, M. V. (2014). Expression of ido Gene in Fetal Liver Mesenchymal Stem Cells Following Cryopreservation. Problems of Cryobiology and Cryomedicine, 24(1), 16–27. https://doi.org/10.15407/cryo24.01.016

Issue

Section

Theoretical and Experimental Cryobiology