Blood Osmolytes of Fish Notothenia coriiceps, Chaenocephalus aceratus, Parachaenichthys charcoti caught near the Argentine Islands, Antarctica

Авторы

  • Olexandr L. Savytskiy
  • Kostiantyn M. Danylenko
  • Dmytro G. Lutsenko Отдел криофизиологии

DOI:

https://doi.org/10.15407/cryo27.04.367

Ключевые слова:

естественные криопротекторы, осмолиты крови, антарктические рыбы, Notothenia coriiceps, Chaenocephalus aceratus, Parachaenichthys charcoti, мочевина, глюкоза, калий

Аннотация

 

Probl Cryobiol Cryomed 2017; 27(4): 367-371

Биографии авторов

Olexandr L. Savytskiy

ИнÑтитут гидробиологии ÐÐРУкраины, г. Харьков

Kostiantyn M. Danylenko

Ðациональный антарктичеÑкий научный центр МОРУкраины, г. Киев

Dmytro G. Lutsenko, Отдел криофизиологии

ИнÑтитут проблем криобиологии и кримедицины ÐÐРУкраины, г. Харьков

Библиографические ссылки

Bacila M., Rosa R., Rodrigues E. et al. Tissue metabolism of the ice-fish Chaenocephalus aceratus Lonnberg. Comp. Biochem. Physiol 1989; 92B (2): 313–318.

Czikoa P.A., DeVries A.L., Evans C.W., Cheng C.-H.C. Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming. PNAS 2014; 111 (40): 14583–14588. CrossRef PubMed

DeVries A.L., Wohlschlag D.E. Freezing Resistance in Some Antarctic Fishes. Science 1969; 163 (3871): 1073–1075. CrossRef

Duman J.G. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. J Exp Biol 2015; 218 (12): 1846–1855. CrossRef PubMed

Egginton S., Taylor E.W., Wilson R.W. et al. Stress response in the Antarctic teleosts (Notothenia neglecta Nybelin and N. rossii Richardson). J Fish Biol 1991; 38: 225–235. CrossRef

Fields L.G., DeVries A.L. Variation in blood serum antifreeze activity of Antarctic Trematomus fishes across habitat temperature and depth. Comp Biochem Physiol A Mol Integr Physiol 2015; 185: 43–50. CrossRef PubMed

Fisher W., Hureau J.C. (Eds.) FAO species identification sheets for fishery purpose. Southern ocean (Fishing areas 48, 58, and 88) (CCAMLR Convention Area), Vol. 2. – Rome: FAO; 1985.

Helfman G.S., Collette B.B., Facey D.E., Bowen B.W. The diversity of fishes, 2nd ed. – John Wiley & Sons; 2009. PubMed

O'Grady S.M., DeVries A.L. Osmotic and ionic regulation in polar fishes. J Exp Mar Biol Ecol 1982; 57: 219–228. CrossRef

Raymond J. A. Seasonal variations of trimethylamine oxide and urea in the blood of a cold-adapted marine teleost, the rainbow smelt . Fish Physiol Biochem 1994; 13(1): 13–22. CrossRef PubMed

Raymond J.A. Responses of Marine Fishes to Freezing Temperatures: A New Look at Colligative Mechanisms. In Bittar E.E., Willis J.S. Editors. Advances in Molecular and Cell Biology, Vol. 19. Elsevier; 1997. p. 33–55. CrossRef

Raymond J.A., DeVries A.L. Elevated concentrations and synthetic pathways of trimethylamine oxide and urea in some teleost fishes of McMurdo Sound, Antarctica. Fish Physiol Biochem 1998; 18: 387–398. CrossRef

Rodrigues E., Feijo-Oliveira M., Gannabathula S.V. et al. A baseline studies on plasmatic constituents in the Notothenia rossii and Notothenia coriiceps in Admiralty Bay, King George Island, Antarctica. INCT-APA Annual Activity Report 2012; 1: 144–147. CrossRef

Yancey P.H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 2005; 208: 2819–2830. CrossRef PubMed

Загрузки

Опубликован

2017-12-23

Как цитировать

Savytskiy, O. L., Danylenko, K. M., & Lutsenko, D. G. (2017). Blood Osmolytes of Fish Notothenia coriiceps, Chaenocephalus aceratus, Parachaenichthys charcoti caught near the Argentine Islands, Antarctica. Проблемы криобиологии и криомедицины, 27(4), 367–371. https://doi.org/10.15407/cryo27.04.367