Effect of Cryoprotective Solutions on Survival and Teratogenicity of Prussian Carp Embryos (Carassius auratus gibelio Bloch, 1783)
DOI:
https://doi.org/10.15407/cryo24.02.149Keywords:
embryos, Prussian carp, cryoprotectant, survival, teratogenicityAbstract
There was studied the effect of cryoprotective solutions, belonging to different classes of chemicals, on the survival
and abnormal development of Prussian carp (Carassius auratus gibelio Bloch, 1783) embryos at the stage of development corresponding to 6 somites. The embryos were incubated during 60 minutes in 10% solutions of cryoprotectants dimethyl sulfoxide (DMSO), 1,2-propane diol (1,2-PD), 1,3-propane diol (1,3 PD), 1,3-butane diol (1,3-DB), 1,4-butane diol (1,4-BD), 1,2-metaoxyethane (1,2-MOE), glycerol, ethylene glycol (EG), methanol, polyethyleneoxide (PEO-1500) and sucrose. Thereafter, the embryos were washed and traced to the stage of development of free-swimming larvae. The highest survival rates for the embryos of Prussian carp (54–67%) was observed in 10% solutions of 1,2-PD, 1,3-PD, EG, PEO-1500, and sucrose, providing the preservation of normally developing embryos close to the control level. Cryoprotective solutions of 1,3-BD, 1,4-BD had higher toxicity: the survival of embryos in those made 40–49%. In the solutions of 1,2-MOE, DMSO, glycerol and methanol cryoprotective agents the survival rate of embryos was minimal. The highest level of teratogenic embryos was observed after incubation in the cryoprotectant solutions of 1,2-MOE and methanol.
Probl Cryobiol Cryomed 2014; 24(2):149-156.
References
Adam M.M., Rana K.J., McAndrew B.J. Effect of cryoprotectants on activity of selected enzymes in fish embryos. Cryobiology 1995; 32(1): 92–104. CrossRef
Ahammad M.M., Bhattacharyya D., Banerjee R.D., Bandyopadhyay P.K. Toxicity of protectants to embryos of silver carp after cold storage at different storage time periods. Cell Preservation Technology 2004; 2(3): 227–233. CrossRef
Bart A.N. The use of ultrasound to enhance transport of compounds into fish and fish embryos: a review. Asian Fisheries Science 2001; 14(4): 389–397.
Bart A.N. New approaches in cryopreservation of fish embryos. In: The World Aquaculture Society: Cryopreservation in Aquatic Species. Louisiana, Baton Rouge 2000; p. 179–187.
Cabrita E., Chereguini O., Luna M.J. et al. Effect of different treatments on the chorion permeability to DMSO of turbot embryos (Scophthalmus maximus). Aquaculture 2003; 221(1–4): 593–604. CrossRef
Ding F.H., Xiao Z.Z., Li J. Preliminary studies on the vitrification of red sea bream (Pagrus major) embryos. Theriogenology 2007; 68(5): 702–708. CrossRef PubMed
Fahy G.M., Lilley T.H., Linsdell H. et al. Cryoprotectant toxicity and cryoprotectant toxicity reduction: In search of molecular mechanisms. Cryobiology 1990; 27(3): 247–268. CrossRef
Fahy G.M., Wowk B., Wu J., Paynter S. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 2004; 48(1): 22–35. CrossRef PubMed
Gerasimov J.L. Fundamentals of Fisheries. Samara: Samara University; 2003.
Hagedorn M., Kleinhans F.W. Problems and prospects in cryopreservation of fish embryos. In: The World Aquaculture Society: Cryopreservation in Aquatic Species. Louisiana, Baton Rouge 2000; p. 161–178.
Hagedorn M., Kleinhans F.W., Artemov D., Pilatus U. Characte-rization of a major permeability barrier in the zebrafish embryo. Biol Reprod 1998; 59(5): 1240–1250. CrossRef PubMed
Hagedorn M., Hsu E.W., Kleinhans F.W., Wildt D.E. New approaches for studying permeability of fish embryos: Toward successful cryopreservation. Cryobiology 1997; 34(4): 335–347. CrossRef PubMed
Hagedorn M., Hsu E.W., Pilatus U. et al. Magnetic resonance microscopy and spectroscopy reveal kinetics of cryopro-tectant permeation in a multicompartment biological system. Proceedings Nat Acad Sci. USA; 1996; 93(15): 7454–7459. CrossRef
Leibo S.P. Cryopreservation of oocytes and embryos: Optimization by theoretical versus empirical analysis. Theriogenology 2008; 69(1): 37–47. CrossRef PubMed
Liu K.C., Chou T.C., Lin H.D. Cryosurvival of goldfish embryo after subzero freezing. Aquatic Living Resources 1993; 6(1): 63–66. CrossRef
Mikson K.B., Cherepanov V.V. Effect of cryoprotectant solutions on survival of crucian carp embryos. Problems of Cryobiology 2012; 22(3): 373.
Mikson K.B., Kopeika E.F., Ishkov G.S. Influence of cryoprotective medium components on the loach embryos (Misgurnus fossilis L., 1758). Interdepartmental thematic collection: Veterinary Medicine 2008; (89): 271–274.
Mikson K.B., Kopeika E.F., Linnik T.P. Conditions for loach (Misgurnus fossilis) embryos vitrification in cryoprotective media. Problems of Cryobiology 2009; 19(2): 154–162.
Mikson K.B., Kopeika E.F., Linnik T.P. Survival of Dwarf gouramy embryos (Colisa lalia) after incubation in cryoprotective media. Problems of Cryobiology 2008; 18(3): 343–345.
Mikson K.B., Zinchenko A.V., Bobrova E.N. Phase transitions and vitrification in cryoprotective media and embryos Misgurnus fossilis L., 1758. Problems of Cryobiology 2008; 18(2): 225.
Petrunkina A.M. Fundamental aspects of gamete cryobiology. J Reproduktionsmed Endokrinol 2007; 4(2): 78–91.
Robertson S.M., Lawrence A.L., Nell W.H. et al. Toxicity of the cryoprotectants glycerol, dimethyl sulfoxide, ethylene glycol, methanol, sucrose, and sea salt solutions to the embryos of red drum. Progressive Fish-Cult 1988; 50(3): 148–154. CrossRef
Veprintsev B.N., Novikov A.N., Uteshev V.K., Smolikhina T.I. DMSO effect at subzero temperatures on loach embryos. Kriobiologiya 1989; (2): 16–21.
Yamamoto K., Yamazaki F. Rhythm of development in the oocyte of the gold-fish, Carassius auratus. Bull Fac Fish Hokkaido Univ 1961; 12(2): 93–110.
Zhang T.T. Cryopreservation of gametes and embryos of aquatic species. In: Fuller B.J., Lane N., Benson E.E., editors. Life in the Frozen State. Florida: CRC Press LLC; 2004. p. 415–436. CrossRef
Zhang T.T., Rawson D.M. Permeability of dechorionated one–cell and six-somite stage zebrafish (Brachydanio rerio) embryos to water and methanol. Cryobiology 1998; 37(1): 13–21. CrossRef PubMed
Zhang T.T., Rawson D.M. Permeability of the vitelline membrane of zebrafish (Brachydanio rerio) embryos to methanol and propane-1,2-diol. CryoLetters 1996; 17(6): 273–280.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Konstantin B. Mikson, Elena B. Revenko, Anna A. Gapon
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).