Media Aminoacid Profile During In Vitro Co-Culture of Human Pre-Implantation Embryos on Monolayer of Fresh or Cryopreserved Cumulus and Granulosa Cells
DOI:
https://doi.org/10.15407/cryo26.02.124Keywords:
cumulus and granulosa cells, cryopreservation, amino acid, human pre-implantation embryosAbstract
Co-culturing with the cumulus and granulosa cells (CGC) provide a microenvironment which can ensure the normal growth and development of human pre-implantation embryos in vitro. Examining the quantitative and qualitative compositions of this environment is of an important value to produce the systems to culture human embryos in vitro. The paper described the human embryos of the fifth day of development (blastocyst stage), monolayer culture of cryopreserved and freshly isolated CGC. We investigated the influence of culturing on monolayer of freshly isolated and cryopreserved CGC on morphokinetic characteristics of human pre-implantation embryos obtained in vitro as well as the amino acid profile of the culturing media. It has been found that cryopreservation does not affect the ability of CGC to support the development of pre-implantation embryos and improves their quality. There was determined the difference in amino acid composition of the standard medium of those for co-culturing on monolayer of either native or cryopreserved culture and cumulus granulosa. The presence of CGC changes the biochemical profile of culturing medium by increasing the content of the amino acids such as tryptophan, proline, valine, ornithine and glutamine.
Â
Probl Cryobiol Cryomed 2016; 26(2):124-132.
References
Adjaye J., Huntriss J., Herwig R. et al. Primary differentiation in the human blastocyst: comparative molecular portraits of inner cell mass and trophectoderm cells. Stem Cells 2005; 23(10): 1514–1525. CrossRef PubMed
Aktan T.M., Gorkemli H., Gezginc K. et al. Improvement in embryo quality and pregnancy rates by using autologous cumulus body during ICSI cycles. J Turk Ger Gynecol Assoc 2011; 12(3): 162–167. CrossRef PubMed
Brison D.R., Houghton F.D. Identification of viable embryos in IVF by on-invasive measurement of amino acid trunover. Hum Reprod 2004; 19(10): 2319–2324. CrossRef PubMed
Carrell D.T., Peterson C.M., Jones K.P. et al. A simplified coculture system using homologous, attached cumulus tissue results in improved human embryo morphology and pregnancy rates during in vitro fertilization. J Assist Reprod Genet 1999; 16(7): 344–349. CrossRef PubMed
Ellenbogen A., Shalom-Paz E., Anshina M.B. Maturation of oocytes in vitro. Indications, techniques and results. Problemy Reproduktologii 2015; 21(1): 32–40. CrossRef
Fabbri R., Porcu E., Marsella T. et al. Human embryo development and pregnancies in an homologous granulosa cell coculture system. J Assist Reprod Genet 2000; 17(1): 1–12. CrossRef PubMed
Gardner DK, Schoolcraft WB. Culture and transfer of human blastocyst. Curr Opin Obstet Gynecol 1999 Jun; 11(3): 307–11. CrossRef PubMed
Houghton F., Hawkhead J., Humpherson P. et al. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod 2002; 18(8): 1756–1757. CrossRef
Huang Z., Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol. Hum. Reprod 2010; 16(10): 715–725. CrossRef PubMed
Hudson N.L., Berg M.C., Green M.P. et al. The microenviron-ment of the ovarian follicle in the postpartum dairy cow: effects on reagent transfer from cumulus cells to oocytes in vitro. Theriogenology 2014; 82(4): 563–573. CrossRef PubMed
Kattal N, Cohen J, Barmat L. Role of coculture in human in vitro fertilization: a meta-analysis. Fertil Steril. 2008; 90(4): 1069–1076. CrossRef PubMed
Khan D., Guillemette C., Sirard M. et al. Transcriptomic analysis of cyclic AMP response in bovine cumulus cells. Physiol Genomics 2015; 47(9): 432–442. CrossRef PubMed
Kuran M., Robinson J., Brown D. et al. Development, amino acid utilization and cell allocation in bovine embryos after in vitro production in contrasting culture systems. Reproduction 2002; 124(3): 155–165. CrossRef PubMed
Latham K., Schultz R. Embryonic genome activation. Front Biosci 2001; (6): 748–759. CrossRef
Leese H.J. The formation and function of oviduct fluid. J Reprod. Fert 1988; 82(4): 843–856. CrossRef PubMed
Li R., Whitworth K., Lai L. et al. Concentration and composition of free amino acids and osmolalities of porcine oviductal and uterine fluid and their effects on development of porcine IVF embryos. Mol Reprod Dev. 2007; 74(9): 1228–1235. CrossRef PubMed
McKiernan S., Clayton M., Bavister B. Analysis of stimulatory and inhibitory amino acids for development of hamster one–cell embryos in vitro. Mol. Reprod. Dev. 1995; 42(2): 188–199. CrossRef PubMed
Nagy Z., Varghese A., Agarwal A. Practical manual of in vitro fertilization: advanced methods and novel devices. Springer Science & Business Media, 2012. CrossRef
Petrushko M.P., Pinayev V.I., Revenko O.B. et al. Morphofunctional characteristics of native and cryopreserved human ovarian granulosa and cumulus cells. Problems of Cryobiology 2014; 25(1): 57–66. CrossRef
Protocol on Embryo Protection A Working Party of the 24th Meeting of the Steering Committee on Bioethics of the Council of Europe; Report, Strasbourg, 2003.
Seli E., Botros L. Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic correlates with reproductive potential of embryos in women undergoing in vitrofertilization. Fertil. Steril 2008; 90(6): 2183–2189. CrossRef PubMed
Sturmey R.G., Hawkhead J.A. DNA damage and metabolic activity in the preimplantation embryo. Hum Reprod 2009; 24(1): 81–91. CrossRef PubMed
Zanoni M., Garagna S., Redi С. et al.The 2–cell block occurring during development of outbred mouse embryos is rescued by cytoplasmic factors present in inbred metaphase II oocytes. Int J Dev Biol 2009; 53(1): 129–134. CrossRef PubMed
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Marina P. Petrushko, Vladimir I. Pinyaev
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).