Study of Release of Biologically Active Compounds from Cord Blood Under Different Conditions of Low-Temperature Impact

Авторы

  • Nataliia Moisieieva Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv https://orcid.org/0000-0002-9845-2317
  • Ivan Shcheniavskyi Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv https://orcid.org/0000-0001-8121-2862
  • Olga Gorina Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv https://orcid.org/0000-0003-4075-650X
  • Yuliia Akhatova Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv https://orcid.org/0000-0002-1536-6924
  • Oleksandr Semenchenko Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

DOI:

https://doi.org/10.15407/cryo33.04.250

Ключевые слова:

cryodestruction, cord blood, biologically active substances, low-molecular fraction, low temperatures

Аннотация

Probl Cryobiol Cryomed 2023; 33(4): 250–262

Биографии авторов

Nataliia Moisieieva, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cold Adaptation

Ivan Shcheniavskyi, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cold Adaptation

Olga Gorina, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cold Adaptation

Yuliia Akhatova, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cold Adaptation

Oleksandr Semenchenko, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Cryocytology

Библиографические ссылки

Brock J, Golding D, Smith PM, et al. Update on the role of Actovegin in musculoskeletal medicine: a review of the past 10 years. Clin J Sport Med. 2020;30(1):83-90. CrossRef

Deus IA, Mano JF, Custódio CA. Perinatal tissues and cells in tissue engineering and regenerative medicine. Acta Biomater. 2020; 110: 1-14. CrossRef

Ehrhart J, Sanberg PR, Garbuzova-Davis S. Plasma derived from human umbilical cord blood: Potential cell-additive or cell-substitute therapeutic for neurodegenerative diseases. J Cell Mol Med. 2018; 22(12): 6157-66. CrossRef

Emara AK, Anis H, Piuzzi NS. Human placental extract: the feasibility of translation from basic science into clinical practice. Ann Transl Med [Internet]. 2020 Mar 17 [cited 2021 Sep 20]; 8(5): 156. Available from: https://atm.amegroups.org/article/view/35941/html CrossRef

Fuller BJ, Lane N, Benson EE. Life in the Frozen State. London: CRC Press; 2004. 672 p. CrossRef

Gulevsky OK, Moisieieva NN, Abakumova OS, Shchenyavsky II, Nikolchenko AYu, Gorina OL. inventors; Institute for Problems of Cryobiology and Cryomedicine of NAS of Ukraine, assignee. [Method of obtaining low-molecular fraction from cord blood of cattle]. Ukraine patent № 69652. 2012 May10. Ukrainian.

Komarov FI, Korovkin BF, Menshikov VV. [Biochemical studies in clinic]. Elista: APP Dzhangar; 2001. 216 p. Russian.

Leonel LCPC, Miranda CMFC, Coelho TM, et al. Decellularization of placentas: establishing a protocol. Braz J Med Biol Res [Internet]. 2017 Nov 17 [cited 2021 Sep 20]; 51(1): e6382. Available from: https://www.scielo.br/j/bjmbr/a/Dwy7ZQQvjsSZtJXbL5gXJbP/abstract/?lang=en CrossRef

McIntyre JA, Jones IA, Danilkovich A, et al. The placenta: applications in orthopaedic sports medicine. Am J Sports Med. 2018; 46(1): 234-47. CrossRef

Pogozhykh O, Prokopyuk V, Figueiredo C, Pogozhykh D. Placenta and placental derivatives in regenerative therapies: experimental studies, history, and prospects. Stem Cells Int [Internet]. 2018 Jan 18 [cited 2021 Sep 20]; 2018: 4837930. Available from: https://www.hindawi.com/journals/sci/2018/4837930 CrossRef

Querol S, Samarkanova D. Rapid review: next generation of cord blood banks; transplantation and beyond. Transfusion. 2019; 59(10): 3048-50. CrossRef

Samarkanova D, Rodríguez L, Vives J, et al. Cord blood-derived platelet concentrates as starting material for new therapeutic blood components prepared in a public cord blood bank: from product development to clinical application. Blood Transfus. 2020; 18(3): 208-16. CrossRef

Shabunin SV, Vostroilova GA, Shabanov IE. [Screening of biologically active substances depending on the technological parameters of cryogenic fractionation of the placenta]. Problems of Cryobiology. 2005; 15(3): 306-9. Russian. Full Text

Silini AR, Cargnoni A, Magatti M, et al. The long path of human placenta, and its derivatives, in regenerative medicine. Front Bioeng Biotechnol [Internet]. 2015 Oct 19 [cited 2021 Sep 20]; 3:162. Available from: https://www.readcube.com/articles/10.3389/fbioe.2015.00162 CrossRef

Xia J, Minamino S, Kuwabara K, et al. Stem cell secretome as a new booster for regenerative medicine. Biosci Trends. 2019; 13(4): 299-307. CrossRef

Zhmakin AI. Physical aspects of cryobiology. Physics-Uspekhi. 2008; 51(3): 231-52. CrossRef

Загрузки

Опубликован

2023-12-30

Как цитировать

Moisieieva, N., Shcheniavskyi, I., Gorina, O., Akhatova, Y., & Semenchenko, O. (2023). Study of Release of Biologically Active Compounds from Cord Blood Under Different Conditions of Low-Temperature Impact. Проблемы криобиологии и криомедицины, 33(4), 250–262. https://doi.org/10.15407/cryo33.04.250

Выпуск

Раздел

Теоретическая и экспериментальная криобиология