Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей

Авторы

  • Aleksandr F. Todrin Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков
  • Elena V. Timofeyeva Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

DOI:

https://doi.org/10.15407/cryo25.02.131

Ключевые слова:

Криопротектор, статическая диэлектрическая проницаемость, эмпирические полиномиальные уравнения

Аннотация

СиÑтематизированы литературные данные по ÑтатичеÑкой диÑлектричеÑкой проницаемоÑти воды, чиÑÑ‚Ñ‹Ñ… криопротекторов, их водных раÑтворов и ÑмеÑей. ПоÑтроены ÑмпиричеÑкие полиномиальные ÑƒÑ€Ð°Ð²Ð½ÐµÐ½Ð¸Ñ Ð´Ð»Ñ Ñ€Ð°Ñчета ÑтатичеÑкой диÑлектричеÑкой проницаемоÑти воды и чиÑÑ‚Ñ‹Ñ… криопротекторов в завиÑимоÑти от температуры. Ð”Ð»Ñ Ð²Ð¾Ð´Ð½Ñ‹Ñ… раÑтворов и ÑмеÑей некоторых криопротекторов получены ÑмпиричеÑкие полиномиальные ÑƒÑ€Ð°Ð²Ð½ÐµÐ½Ð¸Ñ Ð² завиÑимоÑти от температуры при фикÑированных концентрациÑÑ… или от концентрации при фикÑированных температурах.

Биографии авторов

Aleksandr F. Todrin, Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

Отдел низкотемпературного конÑервированиÑ

Elena V. Timofeyeva, Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

Отдел низкотемпературного конÑервированиÑ

Библиографические ссылки

Akhadov Y.Y. Dielectric Properties of Binary Solutions. Moscow: Nauka; 1977.

Akhadov Y.Y. Dielectric Properties of pure liquids. Moscow: Izdatelstvo standartov; 1972.

Akode C.G., Kanse K.S., Lokhande M.P. et al. Dielectric relaxation studies of aqueous sucrose in ethanol mixtures using time domain reflectometry. Pramana J Phys 2004; 62(4): 973–981. CrossRef

Alshami A.S. Dielectric properties of biological materials: a physical-chemical approach [dissertation]. Washington state university, 2007.

Anopchenko A., Psurek T., VanderHart D. et al. Dielectric study of the antiplasticization of trehalose by glycerol. Phys Rev 2006; 74(3, Pt.1): 1–10. CrossRef

Aragones J.L., MacDowell L.G., Vega C. Dielectric constant of ices and water: a lesson about water interactions. J Phys Chem. A. 2011; 115(23): 5745–5758. CrossRef PubMed

Archer D.G., Wang P. The dielectric constant of water and Debye-HaÑkel limiting law stopes. J Phys Chem Ref Data 1990; 19(2): 371–411. CrossRef

Baudot A., Bret J.L. A simple capacitive cell for the measurement of liquids dielectric constant under transient thermal conditions. CryoLetters 2003; 24(1): 5–16.

Bhat J.I., Manjunatha M.N. Studies on the effect of dielectric constant on the solvation behaviour of citric acid as a function of temperature. Arch Appl Sci Res 2011; 3(5): 362–380.

Bhatti N.K. Heterogeneous electron transfer rate constants of some substituted bipyridinium halides [dissertation]. Islamabad, 2002.

Bittelli M., Flury M., Roth K. Use of dielectric spectroscopy to estimate ice content in frozen porous media. Water Resour Res 2004; 40(4): 1–11. CrossRef

Bolund B.F., Berglund M., Bernhoff H. Dielectric study of water-methanol mixtures for use in pulsed-power water capacitors. J Appl Phys 2003; 93(5): 2895–2899. CrossRef

Bordi F., Cametti C. Colby R.H. Dielectric spectroscopy and conductivity of polyelectrolyte solutions. J Phys Condens Matter 2004; 16(49): R1423–R1463. CrossRef

Brennan T.V., Clarke S. Spontaneous degradation of polypeptides at aspartyl and asparaginyl residues: Effects of the solvent dielectric. Protein Sci 1993; 2(3): 331–338. CrossRef PubMed

Bruno T.J., Svoronov P.D.N Handbook of basic tables for chemical analysis. Boca Raton: CRC Press; 2010.

Buck D.E. The dielectric spectra of ethanol-water mixtures in the microwave region [dissertation]. Massachusetts Institute of Technology, 1965.

Buckley F., Maryott A.A. Tables of dielectric dispersion data for pure liquids and dilute solutions. US Department of commerce. National Bureau of Standart. Circular 589. Available from: www.boulder.nist.gov/div838/SelectedPubs/NBS%20 Circular%20589.pdf] [cited 5.06.2014].

Butler R.A. Electrolyte behavior in solvents of high dielectric constant [dissertation]. University of Florida, 1978.

Caleman C., van Maaren P.J., Hong M. et al. Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant. J Chem Theory Comput 2012; 8(1): 61–74. CrossRef PubMed

Chaudhari H.C., Chaudhari A., Mehrotra S.C. Dielectric study of aqueous solutions of alanine and phenylalanine. J Chin Chem Soc 2005; 52(1): 5–10. CrossRef

Chavan S., Kumbharkhane A., Mehrotra S. Microwave dielectric behaviour of 1,2-propanediol – water mixture studied using time domain reflectometry technique. J Chin Chem Soc 2007; 54(6): 1457–1462. CrossRef

Chen H.-I., Chang H.-Y. Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloids and Surfaces A: Physicochem Eng Aspects 2004; 242(1–3): 61–69. CrossRef

Chen Y.-J., Zhuo K.-L., Kang L. Dielectric constants for binary saccharide-water solutions at 278.15–313.15 K. Acta Phys Chim Sin 2008; 24(1): 91–96.

Chitra R., Smith P.E. Molecular dynamics simulations of the properties of cosolvent solutions. J Phys Chem 2000; 104(24): 5854–5864. CrossRef

Cohn E.J., McMeekin T.L., Blanchard M.H. Studies in the physical chemistry of amino acids, peptides, and related substances. XI. The solubility of cystine in the presence of ions and another dipolar ion. J. Gen. Physiol. 1938; 21(5): 651–663. CrossRef PubMed

Cole R.H., Davidson D.W. Dielectric properties of trimethylene glycol. Brown university, ONR Contract Nonr-562( 03 ), NR-051–284, 1953. p. 28–36.

Common organic solvents: table of properties Available from: www.wuestgroup.com/Solvent%20Properties.pdf [cited 16.04.2014].

CRC Handbook of chemistry and physics. Boca Raton: CRC Press, 2005.

Daneshvari D. Investigation of binary polar solvent mixtures, solubilized ferroelectric salts and Paraffin-based derivatives using dielectric spectroscopy [dissertation]. Basel, 2007.

Davidson D.W. The dielectric properties of methanol and methanol-d. Can J Chem 1957; 35(5): 458–73. CrossRef

Dielectric constant of common materials Available from: www.flowmeterdirectory.com/dielectric_constant_01.html [cited 16.07.2014].

Douheret G., Morenas M. Thermodynamic and physical beha-viour of some water + polyethyleneglycol mixtures. II. Dielectric properties. Can J Chem 1979; 57(6): 608–613. CrossRef

Emara M.M., Shehata H.A., Elnhaily S. Thermodynamics of ion-association of NaClO4 in aqueous-methanol and aqueous-glycerol using conductance measurement. J Chin Chem Soc 1988; 35(5): 337–344. CrossRef

Experimental aspects Available from: http://prr.hec.gov.pk/chapters/346S-3.pdf (accessed on 28.06.2014).

Fabbri A., Fen-Chong T., Coussy O. Dielectric capacity, liquid water content, and pore structure of thawing-freezing mate-rials. Cold Reg Sci Technol 2006; 44(1): 52–66. CrossRef

Faraji M., Farajtabar A., Gharib F. Determination of water-ethanol mixtures autoprotolysis constants and solvent effect. J Appl Chem Res 2009; 9(1): 7–12.

Farjtabar A. Application of electrochemistry to determination of transfer gibbs energies and autoprotolysis constants for aqueous mixtures of dimethyl sulfoxide. J Appl Chem Res 2012; 20(1): 28–35.

Feng Y., Yu Z.-W., Quinn P.J. Effect of urea, dimethylurea, and tetramethylurea on the phase behavior of dioleoylphosphatidyl-ethanolamine. Chem Phys Lipids 2002; 114(2): 149–157. CrossRef

Gaiduk V.I., TseitlinB.M., Vij J.K. Orientational/translational relaxation in aqueous electrolyte solutions : a molecular model for microwave/far-infrared ranges. Phys Chem Chem Phys 2001; 3(4): 523–534. CrossRef

Gavish N., Promislow K. Dependence of the dielectric constant of electrolyte solutions on ionic concentration Available from: http://arxiv.org/pdf/1208.5169v1.pdf [cited 29.06.2014].

Gomaa E.A., Al-Jahdali B.A.M. Electrochemical studies on the interaction of cadmium ion with kryptofix 22 in MeOH-DMF solutions at different temperatures. Sci Technol 2012; 2(4): 66–76. CrossRef

Hassion F.X., Cole R.H. Dielectric properties of liquid ethanol and 2-propanol. Brown university, ONR Contract Nonr-562(03), NR-051-284: p. 1–27.

Hasted J.B., Ritson D.M., Collie C.H. Dielectric properties of aque-ous ionic solutions. Parts I and II. J Chem Phys 1948; 16(1): 1–21. CrossRef

Hernandez-Luis F., Galleguillos-Castro H., Esteso M.A. Activity coefficients of NaF in aqueous mixtures with e-increasing co-solvent: formamide-water mixtures at 298.15K. Fluid Phase Equilibr 2005; 227(2): 245–253. CrossRef

Hernandez-Perni M.E. A Contribution to the understanding of percolation phenomena in binary liquids [dissertation]. Basel, 2004.

Hobbs M.E., Jhon M.S., Eyring H. The dielectric constant of liquid water and various forms of ice according to significant structure theory. PNAS 1966; 56(1): 31–38. CrossRef PubMed

Karapetyan Y.A., Eychis V. Physical-chemical properties of the electrolyte non-aqueous solutions. Moscow: Khimia; 1989. PubMed

Khalil M.I., Al-Resayes S.I. The role of dielectric constant in sodium chloride solution chemistry: Magnitude of super saturation. Int J Phys Sci 2012; 7(4): 578–583.

Knecht L.A. N-methylacetamide: purification and tests for purity. Pure Appl Chem 1971; 27(1–2): 281–290. CrossRef

Koizumi N., Hanai T. Dielectric constants of some alcohols at low frequencies. Bull Inst Chem Res 1955; 33(1): 14–20.

Koizumi N., Hanai T. Dielectric properties of polyethylene glycols: dielectric relaxation in solid state. Bull Inst Phys Res 1964; 42(2–3): 115–127.

Lee J.M., Jhon M.S., Eyring H. Significant structure theory applied to electrolyte solution. PNAS 1979; 76(11): 5421–5423. CrossRef PubMed

Lifanova N.V., Usacheva T.M., Bakhilina N.V. et al. Dielectric properties of the propane-1,2-diol-benzene system. Vestnik Moskovskogo universiteta. Khimia. 1998; 39(1): 33–36.

Lu Z., Manias E., Macdonald D.D. et al. Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave dielectric relaxation spectroscopy. J Phys Chem A 2009; 113(44): 12207–12214. CrossRef PubMed

Macdonald J.R. Analysis of dielectric and conductive dispersion above tg in glass-forming molecular liquids. J Phys Chem B 2008; 112(44): 13684–13694. CrossRef PubMed

Mali C.S., Chavan S.D., Kanse K.S. et al. Dielectric relaxation of poly ethylene glycol – water mixtures using time domain technique. Indian J. Pure Appl. Phys. 2007; 45(5): 476–481.

Malmberg C.G., Maryott A.A. Dielectric constants of aqueous solutions of dextrose and sucrose. J Res Natl Inst Stan 1950; 45(4): 299–303. CrossRef

Malmberg C.G., Maryott A.A. Dielectric constant of water from 0 to 100°C. J. Res. Natl. Inst. Stan. 1956; 56(1): 1–8. CrossRef

Markovskyy Y.E., Zori A.A. Use of RF-method for the analysis of component composition of solutions and mixtures of liquid organic dielectrics. Scientific Papers of Donetsk National Technical University. 2010; (171): 212–217.

Marshall W.L. Dielectric constant of water discovered to be simple function of density over extreme ranges from –35 to +600°C and to 1200 MPa (12000 Atm.), Believed Universal Available from: http://precedings.nature.com/documents/2478/version/1/files/npre20082472–1.pdf [cited 22.05.2014].

Maryott A.A., Smith E.R. Table of dielectric constants of pure liquids. United States department of commerce, National bureau of standards. Circular 514 Available from: www.boulder.nist. gov/div838/SelectedPubs/NBS%20Circular%20514.pdf [cited 19.05.2014].

Mason W.A., Shutt W.J. The dielectric capacity of electrolytes in mixed solvents: ion association in solutions of magnesium sulphate. Proc R Soc Lond A 1940; 175(961): 234–253. CrossRef

Matsuoka T., Okada T., Murai K. et al. Dynamics and hydration of trehalose and maltose in concentrated solution. J Mol Liq 2002; 98–99: 317–327. CrossRef

McDuffie G.E., Quinn R.G., Litovitz T.A. Dielectric properties of glycerol-water mixtures. J Chem Phys 1962; 37(2): 239–242. CrossRef

MEGlobal. Ethylene. Available from: www.meglobal.biz/products-literature [cited 9.06.2014].

Mohsen-Nia M., Amiri H. Measurement and modelling of static dielectric constants of aqueous solutions of methanol, ethanol and acetic acid at T=293.15 K and 91.3 kPa. J Chem Thermodynamics 2013; 57: 67–70. CrossRef

Moscalets A.P. Development of models of supramolecular organization and physico-chemical properties of liquid solutions [dissertation]. Moscow; 2010.

Nagarajan R., Wang C.-C. Theory of surfactant aggregation in water/ethylene glycol mixed solvents. Langmuir 2000; 16(12): 5242–5251. CrossRef

Nikolsky B.P. editor. Handbook of chemist. Vol. 1. Moscow-Leningrad: Khimia; 1966.

Olmi R., Meriakr V.V., Ignesti A. et al. Dielectric spectroscopy of sugar and ethanol solutions in water for monitoring alcoholic fermentation processes. J Microwave Power E E 2007; 41(3): 38–50.

O'Reilly N.J., Magner E. Electrochemistry of cytochrome c in aqueous and mixed solvent solutions: thermodynamics, kinetics, and the effect of solvent dielectric constant. Langmuir 2005; 21(3): 1009–1014. CrossRef PubMed

Orellana L. Immobilized enzymes: time temperature indicators for dielectric pasteurization processes [dissertation]. Wa-shington State University, 2004.

Pathak R.N., Saxena I., Mishra A. et al. Study of the influence of alkyl chain cation-solvent interactions on water structure in 1,3-butanediol-water mixture by apparent molar volume data. J Chem 2011; 8(3): 1323–1329. CrossRef

Pelagic meg/water umbilical flushing and storage fluids Available from: www.subseafluids.com/pdfs/Umbilical_ Storage_fluids/Pelagic_MEG.Water/Pelagic_MEG-Water_ Manual.pdf [cited 7.06.2014].

Physical properties of glycerine and its solutions. ACI Science. American Cleaning Institute. Available from: www.aciscience. org/does/Physical_properties_of_glycerine_and_its-solutions.pdf] [cited 17.05.2014].

Pure component properties. Available from: www.ddbst.com/en/EED/PCP/PCPindex.php [cited 1.07.2014].

Rao N.S.S.V.R. Studies on solute-solvent interactions in ionic liquid systems [dissertation]. Visakhapatnam, 2013.

Raviyan P., Tang J., Orellana L. et al. Physicochemical properties of a time-temperature indicator based on immobilization of aspergillus oryzae-amylase in polyacrylamide gel as affected by degree of cross-linking agent and salt content. J Food Sci 2003; 68(7): 2302–2308. CrossRef

Roy R.N., Baker G.E., Hoffman T., Breithaupt E.L., Roy L.N. Standard electrode potentials of silver-silver chloride elect-rodes in 20, 30, and 50 % (w/w) ethylene glycol/water from 25°C to –20°C pK2 and pH* values of the physiological buffer "BES" in 50 % (w/w) ethylene glycol/water. CryoLetters 1988; 9(3): 172–185.

Sakai N., Mao W., Koshima Y. et al. A method for developing model food system in microwave heating studies. J Food Eng 2005; 66(4): 525–531. CrossRef

Saleh J.M., Khalil M., Hokmat N.A. Investigation of some physical properties of glycerol- water mixtures at 298.15 K. J Iraqi Chem Soc 1986; 11(1): 89–104.

Sarkar B.K., Roy M.N., Sinha B. Conductance studies on some alkali metal acetates in aqueous glycerol solutions. Indian J Chem 2009; 48A(1): 63–68.

Sarode A.V., Kumbharkhane A.C. Chain length effect on dielectric relaxation and thermo-physical behaviour of organic polymers through relaxation dynamics using TDR. Int J Basic Appl Res 2012; Special volume: 220–225.

Schwer C., Kenndler E. Electrophoresis in fused-silica capillaries: the influence of organic solvents on the electroosmotic velocity and the potential. Anal Chem 1991; 63(17): 1801–1807. CrossRef

Seedher N., Bhatia S. Solubility enhancement of cox-2 inhibitors using various solvent systems. AAPS Pharm Sci Tech 2003; 4(3): 1–9. CrossRef PubMed

Sengwa R.J. A compararive dielectric study of ethylene glycol and propylene glycol at different temperatures. J Mol Liq 2003; 108(1–3): 47–60. CrossRef

Sengwa R.J., Choudhary S., Khatri V. Microwave dielectric spectra and molecular relaxation in formamide-N,N-dimethylformamide binary mixtures. Spectrochim Acta A 2011; 82(1): 279–282. CrossRef PubMed

Sengwa R.J., Khatri V., Choudhary S. Temperature dependent static dielectric constant and viscosity behaviour of glycerol-amide binary mixtures: Characterization of dominant complex structures in dielectric polarization and viscous flow processes. J Mol Liq 2010; 154(2–3): 117–123. CrossRef

Sengwa R.J., Khatri V., Sankhla S. Dielectric behaviour and hydrogen bond molecular interaction study of formamide-dipolar solvents binary mixtures. J. Mol. Liq. 2009; 144(1–2): 89–96. CrossRef

Sengwa R.J., Khatri V., Sankhla S. Structure and hydrogen bonding in binary mixtures of N,N-dimethylformamide with some dipolar aprotic and protic solvents by dielectric characterization. Ind. J. Chem. 2009; 48A(4) 512–519.

Sengwa R.J., Sankhla S. Characterization of heterogeneous interaction in binary mixtures of ethylene glycol oligomer with water, ethyl alcohol and dioxane by dielectric analysis. J Mol Liq 2007; 130(1–3): 119–131. CrossRef

Shirgire S.D., Talware R.B., Kadam S.S. et al. Dielectric relaxation of d-sorbitol-water mixtures using a Time Domain Reflectometry Technique. J Mol Liq 2012; 169: 33–36. CrossRef

Static dielectric constant of water and steam at saturation condition Available from: http://twt.mpei.ac.ru/tthb/2/OIVT/HB_v201/GLAVA3/Table3_6.pdf [cited 11.06.2014].

Synthetic glycerine – dielectric constant Available from: www.dow.com/optim/optim-advantage/physical-properties/dielectric.htm [cited 1.06.2014].

Tommila E., Murto M.-L. The influence of the solvent on reaction velocity. XXIII. The alkaline hydrolysis of ethyl acetate in dimethyl sulphoxide – water mixtures. Acta Chem Scand 1963; 17(7): 1947–1956. CrossRef

Tsai C. S. Spontaneous decarboxylation of oxalacetic acid. Can. J. Chem. 1967; 45(8): 873–880. CrossRef

Uematsu M., Franck E.U. Static dielectric constant of water and steam. J. Phys. Chem. Ref. Data 1980; 9(4): 1291–1306. CrossRef

Undre P.B., Khirade P.W., Rajenimbalkar V.S. et al. Dielectric relaxation in ethylene glycol – dimethyl sulfoxide mixtures as a function of composition and temperature. J Korean Chem Soc 2012; 56(4): 416–423. CrossRef

Wang P., Anderko A. Computation of dielectric constants of solvent mixtures and electrolyte solutions. Fluid Phase Equilibr 2001; 186(1–2): 103–122. CrossRef

Wear J.O. Apparatus for dielectric constant measurements and measurements for water-methanol mixtures. Arkansas Acad Sci Proc 1970; 24(1): 80–83.

Wohlfart C. Static dielectric constants of pure liquids and binary liquid mixtures. Berlin, New York: Springer Science & Business Media, 2008.

Yilmaz H. Excess properties of alcohol-water systems at 298.15 K. Turk J Phys 2002.; 26(3): 243–246.

Yoon G. Dielectric properties of glucose in bulk aqueous solutions: Influence of electrode polarization and modeling. Biosens. Bioelectron. 2011; 26(5): 2347–2353. CrossRef PubMed

Zahn M., Ohki Y., Fenneman D.B. et al. Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design. Proc IEEE 1986; 74(9): 1182–1236. CrossRef

Zhuravlev A.V., Susliaev V.I., Tarasenko P.F. Selection of the model of substance dielectric relaxation for measured spectrums of the mixture of methyl alcohol and water on the basis of testing hypotheses. Izvestia Vischih Uchebnih Zavedeniy Fizika. 2010; 53(9–3): 279–80.

Zhuravlev V.I., Usacheva T.M. Equilibrium dielectric properties of butanediols. Moscow Univ Chem Bull 2010; 65(4): 225–228. CrossRef

Загрузки

Опубликован

2015-06-20

Как цитировать

Todrin, A. F., & Timofeyeva, E. V. (2015). Теплофизические свойства криопротекторов. VIII. Диэлектрическая проницаемость ряда криопротекторов, их водных растворов и смесей. Проблемы криобиологии и криомедицины, 25(2), 131–150. https://doi.org/10.15407/cryo25.02.131

Выпуск

Раздел

Теоретическая и экспериментальная криобиология