Dynamics of Dimethyl Sulfoxide Penetration Into L929 Cells and L929-Based Spheroids

Authors

  • Anton I. Moisieiev Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv https://orcid.org/0000-0003-4585-1194
  • Igor F. Kovalenko Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv https://orcid.org/0000-0002-7063-6712
  • Svitlana Ye. Kovalenko Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
  • Galyna A. Bozhok Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv https://orcid.org/0000-0002-4188-9286
  • Olga I. Gordienko Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv https://orcid.org/0000-0002-4459-4213

DOI:

https://doi.org/10.15407/cryo31.04.316

Keywords:

L929 cells, spheroids, filtration coefficients, permeability coefficients, dimethylsulfoxide, osmotically inactive volume, cryopreservation

Abstract

The study proposes an algorithm for calculating of appreciable permeability coefficients for multicellular structures in a cryoprotectant medium using  physical and mathematical model of mass transfer. The values of surface-area-to-volume ratio for L929 cells at different temperatures were determined and the thermal expansion coefficient of the surface area of cell membranes was calculated (β = 2.7 × 10-3 /°C). The osmotically inactive volume for L929 cells and their spheroids was determined. Filtration and permeability coefficients to DMSO for  L929 cells and in toto spheroids were found from the dynamic curves of relative volume change. The calculated parameters are the highest for individual cells and significantly (p <0.05) decrease for cells in the spheroids with increasing depth of their location, this reduction may be stipulated by a decrease in the available surface of cells in the spheroids for the penetration of extracellular substances. Obtained in this research permeability characteristics of spheroids can be used to develop optimal cryopreservation regimens for them.

 

Probl Cryobiol Cryomed 2021; 31(4): 316–325

Author Biographies

Anton I. Moisieiev , Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

 

Department of Cryoendocrinology 

Igor F. Kovalenko, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Low Temperature Preservation

 

Svitlana Ye. Kovalenko, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Low Temperature Preservation

 

Galyna A. Bozhok , Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

 

Department of Cryoendocrinology 

Olga I. Gordienko , Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv

Department of Low Temperature Preservation

 

References

Abu-Absi SF, Friend JR, Hansen LK, HuW-S. Structural polarity and functional bile canaliculi in rat hepatocyte spheroids. Exp Cell Res. 2002; 274: 56-67. CrossRef

Achilli T-M, Meyer J, Morgan JR. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther. 2012; 12(10): 1347-60. CrossRef

Akiyama M, Nonomura H, Kamil SH, Ignotz RA. Periosteal cell pellet culture system:a new technique for bone engineering. Cell Transplant. 2006; 15: 521-32. CrossRef

Arai K, Murata D, Takao S, et al. Cryopreservation method for spheroids and fabrication of scaffold-free tubular constructs. PLoS ONE [Internet]. 2020 Apr 02 [cited 2021 May 15]; 15(4):e0230428. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230428 CrossRef

Frese KK; Tuveson DA. Maximizing mouse cancer models. Nat Rev Cancer. 2007; 7: 645-58. CrossRef

Gordiyenko ОІ. [Estimation of the thermal expansion coefficient of erythrocyte membrane surface by shift of erythrocyte distribution curve by spherical index]. Biophysical Bulletin. 2003; 13 (2): 78-81. Ukranian.

Gordiyenko YeО, Gordiyenko ОІ, Maruschenko VV, Sakun OV. [Improved model for the passive mass transfer through the cell plasma membrane]. Biophysical Bulletin. 2008; 21(2): 75-80. Ukranian.

Gordiyenko YeO, Pushkar NS. [Physical basis for low temperature preservation of cell suspensions]. Кyiv: Naukova dumka; 1994. 140 p. Russian.

Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006; 7: 211-24. CrossRef

Holtfreter J. A study of the mechanisms of gastrulation. J Exp Zool. 1944; 95: 171-212. CrossRef

Kelm JM, Timmins NE, Brown CJ, et al. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng. 2003; 83: 173-80. CrossRef

Kosheleva NV, Efremov YM, Shavkuta BS. Cell spheroid fusion: beyond liquid drops model. Sci Rep [Internet]. 2020 Jul 28 [cited 2021 May 15]; 10:12614. Available from: https://www.nature.com/articles/s41598-020-69540-8 CrossRef

Kunz-Schughart LA, Schroeder JA, Wondrak M, et al. Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. Am J Physiol Cell Physiol. 2006; 2905: 1385-98. CrossRef

Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol [Internet]. 2018 Jan 23 [cited 2021 May 15]; 9:6. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2018.00006/full CrossRef

Lee JH, Jung DH, Lee DH, et al. Effect of spheroid aggregation on susceptibility of primary pig hepatocytes to cryopreservation. Transplant Proc. 2012; 44: 1015-7. CrossRef

Lin R-Z, Chang H-Y. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnology J. 2008; 3: 1172-84. CrossRef

Matta SG, Wobken JD, Williams FG, Bauer GE. Pancreatic islet cell reaggregation systems: Efficiency of cell reassociation and endocrine cell topography of rat islet-like aggregates. Pancreas 1994; 9: 439-49. CrossRef

Moscona A, Moscona H. The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J Anat. 1952; 86: 287-301. PubMed

Nyberg SL, Hardin J, Amiot B, et al. Rapid large-scale formation of porcine hepatocyte spheroids in a novel spheroid reservoir bioartificial liver. Liver Transpl. 2005; 11: 901-10. CrossRef

Ogurtsova VV, Kovalenko SYe, Kovalenko IF, Gordiyenko OI. Determination of osmotically inactive volume of murine enterocytes. Probl Cryobiol Cryomed. 2016; 26(1): 93-7. CrossRef

Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007; 8: 839-45. CrossRef

Pinto B, Henriques AC, Silva PM, Bousbaa H. Three-dimensional spheroids as in vitro preclinical models for cancer research. Pharmaceutics [Internet]. 2020 Dec 6 [cited 2021 May 15]; 12(12):1186. Available from: https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-015-383-5 CrossRef

Ryu N-E, Lee S-H, Park H. Spheroid culture system methods and applications for mesenchymal stem cells. Cells [Internet]. 2019 Dec 12 [cited 2021 May 15]; 8:1620. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953111/ CrossRef

Suenaga H, Furukawa KS, Suzuki Y, et al. Bone regeneration in calvarial defects in a rat model by implantation of human bone marrow-derived mesenchymal stromal cell spheroids. J Mater Sci Mater Med [Internet]. 2015 Oct 08 [cited 2021 May 15]; 26:254. Available from: https://link.springer.com/article/10.1007%2Fs10856-015-5591-3 CrossRef

Yamaguchi Y, Ohno J, Sato A, et al. Mesenchymal stem cell spheroids exhibit enhanced in-vitro and in-vivo osteoregenerative potential. BMC Biotechnol [Internet]. 2014 Dec 06 [cited 2021 May 15]; 14:105. Available from: https://bmcbiotechnol.biomedcentral.com/articles/10.1186/s12896-014-0105-9 CrossRef

Downloads

Published

2021-12-24

How to Cite

Moisieiev , A., Kovalenko, I., Kovalenko, S., Bozhok , G., & Gordienko , O. (2021). Dynamics of Dimethyl Sulfoxide Penetration Into L929 Cells and L929-Based Spheroids . Problems of Cryobiology and Cryomedicine, 31(4), 316–325. https://doi.org/10.15407/cryo31.04.316

Issue

Section

Theoretical and Experimental Cryobiology