Особенности апоптоза, индуцированного снижением температуры

Автор(и)

  • Aleksandr K. Gulevsky Інститут проблем кріобіології Ñ– кріомедицини НАН України, м. Харків
  • Yuliya S. Akhatova Інститут проблем кріобіології Ñ– кріомедицини НАН України, м. Харків
  • Ivan I. Shchenyavsky Інститут проблем кріобіології Ñ– кріомедицини НАН України, м. Харків

DOI:

https://doi.org/10.15407/cryo27.02.097

Ключові слова:

апоптоз, гіпотермія, клітинні культури, індукція апоптозу, каспази, окислювальний стрес, антиоксидантна система

Анотація

У роботі узагальнено Ñ– проаналізовано екÑпериментальні дані щодо внеÑку апоптозу в Ð¿Ð¾ÑˆÐºÐ¾Ð´Ð¶ÐµÐ½Ð½Ñ ÐºÐ»Ñ–Ñ‚Ð¸Ð½, викликані відхиленнÑм температури від фізіологічної норми (нижче за 37°С). Доведено учаÑÑ‚ÑŒ в апоптозі, індукованому
помірним охолоджуваннÑм клітин, каÑпаз, під дією Ñких відбуваєтьÑÑ Ñ€Ð¾Ð·Ñ‰ÐµÐ¿Ð»ÑŽÐ²Ð°Ð½Ð½Ñ Ð°Ð½Ñ‚Ð¸Ð°Ð¿Ð¾Ð¿Ñ‚Ð¾Ñ‚Ð¸Ñ‡Ð½Ð¸Ñ… білків родини Bcl 2 та протеоліз інгібітору ДÐК-ази, Ñка відповідає за фрагментацію ДÐК. ІÑтотну роль в механізмі холодової адаптації відіграє РÐК-зв’Ñзуючий білок (Ñold-inducible Rna-binding protein, CIRP), здатний запобігати розвитку апоптозові, індукованому окиÑлювальним ÑтреÑом. У роботі викладено дані, Ñку підтверджують учаÑÑ‚ÑŒ у процеÑÑ– апоптозу та холодової адаптації активних

Біографії авторів

Aleksandr K. Gulevsky, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ холодової адаптації

Yuliya S. Akhatova, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ холодової адаптації

Ivan I. Shchenyavsky, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ холодової адаптації

Посилання

Carpenter D., Hsiang C., Brown D.J et al. Stable cell lines expres-sing high levels of the herpes simplex virus type 1 LAT are refractory to caspase 3 activation and DNA laddering following cold shock induced apoptosis. Virology 2007; 369(1): 12–18. CrossRef PubMed

Chen S.J., Lin P.W., Lin H.P. et al. UV irradiation/cold shock-mediated apoptosis is switched to bubbling cell death at low temperatures. Oncotarget 2015; 6(10): 8007–8018. CrossRef PubMed

Ferry A.L., Vanderklish P.W., Dupont-Versteegden E.E. Enhanced survival of skeletal muscle myoblasts in response to overexpres-sion of cold shock protein RBM3. Am J Physiol Cell Physiol 2011; 301(2): 392–402. CrossRef PubMed

Fisher D.I., McLennan A.G. Correlation of intracellular diadeno-sine triphosphate (Ap3A) with apoptosis in Fhit-positive HEK293 cells. Cancer Lett 2008; 259(2): 186–191. CrossRef PubMed

Fleck C.C., Carey H.V. Modulation of apoptotic pathways in intestinal mucosa during hibernation. Am J Physiol Regul Integr Comp Physiol 2005; 289(2): R586–R595. CrossRef PubMed

Fransen J.H., Dieker J.W., Hilbrands L.B. et al. Synchronized turbo apoptosis induced by cold-shock. Apoptosis 2011; 16(1): 86–93. CrossRef PubMed

Gerasimov I.G., Ignatov D.Yu., Khadartsev F.F., Yashin A.A. The induction of lymphocyties apoptosis of human peripheric blood of room temperature in vitro. Vestnik Novykh Meditsynskikh Tekhnologiy 2007; 14(4): 159.

Grand R.J., Milner A.E., Mustoe T. et al. A novel protein expressed in mammalian cells undergoing apoptosis. Exp Cell Res 1995; 218(2): 439–451. CrossRef PubMed

Guedez L., Stetler-Stevenson W.G., Wolff L. et al. In vitro sup-pression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest 1998; 102(11): 2002–2010. CrossRef PubMed

Joza N., Pospisilik J.A., Hangen E et al. AIF: not just an apoptosis-inducing factor. Ann N Y Acad Sci 2009; 1171: 2–11. CrossRef PubMed

Khar A., Pardhasaradhi B.V., Ali A.M., Kumari A.L. Protection conferred by Bcl-2 expression involves reduced oxidative stress and increased glutathione production during hypothermia-induced apoptosis in AK-5 tumor cells. Free Radical Biol Med 2003; 35(8): 949–957. CrossRef

Kim J.H., Lee J.M., Lee H.N. et al. RNA-binding properties and RNA chaperone activity of human peroxiredoxin 1. Biochem Biophys Res Commun 2012; 425(4): 730–734. CrossRef PubMed

Kitagawa K., Niikura Y. Caspase-independent mitotic death (CIMD). Cell Cycle 2008; 7(8): 1001–1005. CrossRef PubMed

Li J.-H., Zhang X., Meng Yu. et al. Cold inducible RNA-binding protein inhibits hippocampal neuronal apoptosis under hypother-mia by regulating redox system. Acta Physiologica Sinica 2015; 67(4): 386–392.

Li L.Y., Luo X., Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001; 412(6842): 95–99. CrossRef PubMed

Li S., Zhang Z., Xue J. et al. Cold-inducible RNA binding protein inhibits H2O2-induced apoptosis in rat cortical neurons. Brain Res 2012; 1441: 47–52. CrossRef PubMed

Liu J., Xue J., Zhang H. et al. Cloning, expression, and purification of cold inducible RNA-binding protein and its neuroprotective mechanism of action. Brain Res 2015; 1597: 189–195. CrossRef PubMed

Matijasevic Z., Snyder J.E., Ludlum D.B. Hypothermia causes a reversible, p53-mediated cell cycle arrest in cultured fibroblasts. Oncol Res 1998; 10(11–12): 605–610. PubMed

Moore A., Mercer J., Dutina G. et al. Effects of temperature shift on cell cycle, apoptosis and nucleotide pools in CHO cell batch cultues. Cytotechnology 1997; 23(1–3): 47–54. CrossRef PubMed

Neutelings T., Lambert C.A., Nusgens B.V. et al. Effects of mild cold shock (25°C) followed by warming up at 37°C on the cellular stress response. PLoS One 2013; 8(7): e69687. CrossRef PubMed

Nicoletti I., Migliorati G., Pagliacci M.C. et al. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 1991; 139(2): 271–279. CrossRef

Ohnishi T, Wang X, Ohnishi K. et al. p53-dependent induction of WAF1 by heat treatment in human glioblastoma cells. J Biol Chem 1996; 271(24): 14510–14513. CrossRef PubMed

Rauen U., Petrat F., Tongju L.I. et al. Hypothermia injury/cold-induced apoptosis – evidence of an increase in chelatable iron causing oxidative injury in spite of low O2-/H2O2 formation. The FASEB J 2000; 14(13): 1953–1964. CrossRef PubMed

Rauen U., Polzar B., Stephan H. et al. Cold-induced apoptosis in cultured hepatocytes and liver endothelial cells: mediation by reactive oxygen species. The FASEB J 1999; 13(1): 155–168. PubMed

Sakurai T., Itoh K., Liu Y. et al. Low temperature protects mammalian cells from apoptosis initiated by various stimuli in vitro. Exp Cell Res 2005; 309(2): 264–272. CrossRef PubMed

Shen W., Silva M.S., Jaber T. et al. Two small RNAs encoded within the first 1.5 kilobases of the herpes simplex virus type 1 latency-associated transcript can inhibit productive infection and cooperate to inhibit apoptosis. J Virol 2009; 83(18): 9131–9139. CrossRef PubMed

Shimura M., Osawa Y., Yuo A. et al. Oxidative stress as a ne-cessary factor in room temperature-induced apoptosis of HL-60 cells. J Leukoc Biol 2000; 68(1): 87–96. PubMed

Wang X.W., Tseng A., Ellis N.A. et al. Functional interaction of p53 and BLM DNA helicase in apoptosis. J Biol Chem 2001; 276(35): 32948–32955. CrossRef PubMed

Yang R., Weber D.J., Carrier F. Post-transcriptional regu-lation of thioredoxin by the stress inducible heterogenous ri-bonucleo-protein A18. Nucleic Acids Res 2006; 34(4): 1224–1236. CrossRef PubMed

Zhang Z., Sobel R. A., Cheng D. et al. Mild hypothermia increases Bcl-2 protein expression following global cerebral ischemia. Mol Brain Res 2001; 95(1–2): 75–85. CrossRef

Downloads

Опубліковано

2017-06-25

Як цитувати

Gulevsky, A. K., Akhatova, Y. S., & Shchenyavsky, I. I. (2017). Особенности апоптоза, индуцированного снижением температуры. Проблеми кріобіології і кріомедицини, 27(2), 97–109. https://doi.org/10.15407/cryo27.02.097