COVID-19 as a Potential Target for Cryobiology and Cryomedicine

Авторы

  • Anatoliy Goltsev Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков
  • Barry Fuller University College London Medical School, London
  • Mykola Bondarovich Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков
  • Natalya Babenko Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков
  • Yulia Gaevska Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков
  • Iryna Buriak Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков
  • Tatyana Dubrava Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков
  • Kateryna Yampolska Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков
  • Olena Lutsenko Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков
  • Maksim Ostankov Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

DOI:

https://doi.org/10.15407/cryo30.02.107

Ключевые слова:

SARS-CoV-2, COVID-19, immune system, cryopreserved human cord blood leukoconcentrate, antiviral protection

Аннотация

The review presents data on immune pathogenesis of COVID-19 and approaches to its prevention and treatment. The low effectiveness of antiviral drugs is caused by the ability of SARS-CoV2 virus to change its own structure and functions. Existing treatment strategies of COVID-19 are focused on applying the direct antiviral therapies, modulation of innate immune response, "cytokine storm" suppression and use of convalescent plasma. Deregulated interaction between innate and adaptive immune systems determines the start of autoimmune process in the virus carrier body, that requires the use of alternative ways to prevent such diseases using cryobiological technologies. The results of studying the immune biological activity of cryopreserved human cord blood leukoconcentrate (cHCBL) and its components by preventive intranasal administration have been presented. The effectiveness of cHCBL is related to the possible reprogramming of the genes responsible for the implementation of the body's immune responses and induction of the "trained" immunity. Such a modification of the immune system state can be the most promising in protecting the body against viruses, in particular COVID-19.

Probl Cryobiol Cryomed 2020; 30(2): 107–131

Биографии авторов

Anatoliy Goltsev, Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

Department of Cryopathophysiology and Immunology

Barry Fuller, University College London Medical School, London

Royal Free Hospital

Mykola Bondarovich, Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

Department of Cryopathophysiology and Immunology

Natalya Babenko, Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

Department of Cryopathophysiology and Immunology

Yulia Gaevska, Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

Department of Cryopathophysiology and Immunology

Iryna Buriak, Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

Department of Cryomicrobiology

Tatyana Dubrava, Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

Department of Cryopathophysiology and Immunology

Kateryna Yampolska, Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

Department of Cryopathophysiology and Immunology

Olena Lutsenko, Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

Department of Cryopathophysiology and Immunology

Maksim Ostankov, Институт проблем криобиологии и криомедицины НАН Украины, г. Харьков

Department of Cryopathophysiology and Immunology

Библиографические ссылки

Amiral J, Vissac AM, Seghatchian J. Covid-19, induced activation of hemostasis, and immune reactions: Can an auto-immune reaction contribute to the delayed severe complications observed in some patients? Transfus Apher Sci. [Internet]. 2020 May 3[cited 2020 May 15]:102804. Available from: https://www.sciencedirect.com/science/article/pii/S1473050220300999?via%3Dihub CrossRef

Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014; 32(3): 252-60. CrossRef

Armitage J, Tan DBA, Troedson R, et al. Mesenchymal stromal cell infusion modulates systemic immunological responses in stable COPD patients: a phase I pilot study. Eur Respir J [Internet]. 2018 Mar 1 [cited 2020 May 15]; 51(3):1702369. Available from: https://erj.ersjournals.com/content/51/3/1702369.long CrossRef

Arnaud CH. Adding the missing sugars to coronavirus protein structures. Chemical & Engineering News. 2020; 98(6): 24-5. CrossRef

Arts RJW, Moorlag SJCFM, Novakovic B, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe [Internet]. 2018 Jan 10 [cited 2020 May 15]; 23(1): 89-100. Available from: https://www.sciencedirect.com/science/article/pii/S1931312817305462?via%3Dihub CrossRef

Babaeva AG. [Past, present, and future problems in lymphoid regulation of nonlymphoid cell proliferation]. Biull Eksp Biol Med. 1995; 120(9):230-4. Russian. CrossRef

Berkhout B. RNAi-mediated antiviral immunity in mammals. Curr Opin Virol. 2018; 32: 9-14. CrossRef

Bertram S, Glowacka I, Muller MA, et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol. 2011; 85(24): 13363-72. CrossRef

Dandekar AA, Perlman S. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol. 2005; 5(12): 917-27. CrossRef

Darwish I, Banner D, Mubareka S, et al. Mesenchymal stromal (stem) cell therapy fails to improve outcomes in experimental severe influenza. PLoS One. [Internet]. 2013 Aug 15 [cited 2020 May 15]; 8(8): e71761. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071761 CrossRef

DeDiego ML, Nieto-Torres JL, Jimenez-GuardeÑo JM, et al. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res. 2014; 194: 124-37. CrossRef

Delgado-Rochea L, Mestab F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Archives of Medical Research. 2020; 51(5): 384–7. CrossRef

Drannik GN. [Clinical immunology and allergology]. Odessa: Astro-print; 1999. 601 p. Russian.

Eggenhofer E, Benseler V, Kroemer A, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol. [Internet]. 2012 Sep 26 [cited 2020 May 15]; 3: 297. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2012.00297/full CrossRef

Esfandiyari R, Halabian R, Behzadi E, et al. Performance evaluation of antimicrobial peptide ll-37 and hepcidin and в-defensin-2 secreted by mesenchymal stem cells. Heliyon. [Internet]. 2019 Oct 23 [cited 2020 May 15];5(10): e02652. Available from: https://www.sciencedirect.com/science/article/pii/S2405844019363121?via%3Dihub CrossRef

Fan H, Yang J, Hao J, et al. Comparative study of regulatory T cells expanded ex vivo from cord blood and adult peripheral blood. Immunology. 2012; 136(2): 218-30. CrossRef

Ferrara JL, Abhyankar S, Gilliland DG. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc. 1993; 25(1 Pt 2): 1216-7. PubMed

Foronjy RF, Dabo AJ, Cummins N, Geraghty P. Leukemia inhibitory factor protects the lung during respiratory syncytial viral infection. BMC Immunology. [Internet]. 2014 Oct 3 [cited 2020 May 15]; 15: 41. Available from: http://www.biomedcentral.com/1471-2172/15/41 CrossRef

Frieman MB, Chen J, Morrison TE, et al. SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog. [Internet]. 2010 Apr 8 [cited 2020 May 15]; 6(4): e1000849. Available from: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1000849 CrossRef

Fuller BJ. Gene expression in response to low temperatures in mammalian cells: a review of current ideas. Cryo Letters. 2003; 24(2):95-102. PubMed

Goltsev AM, Babenko NM, Gaevska YuO, et al. Immunoregulatory effect of mouse fetal neural cells on the graft-versus-host disease. Cell and Organ Transplantology. 2019; 7(1): 40-6. CrossRef

Goltsev AM, Dubrava TG, Lutsenko OD, et al. [Molecular mechanisms of immune correcting effect of cell therapy under development of autoimmune diseases]. Odes'kyi Medychnyi Zhurnal. 2013; (4): 13-8. Ukranian.

Goltsev AM, Tarannik GK, Grisha IG, et al. inventors; Institute for Problems of Cryobiology and Cryomedicine, assignee. [Method of lyophilization of leukoconcentrate of cord blood]. Patent of Ukraine â„– 113006, 2017 Jan 10. Ukranian.

Goltsev AN. [Probable causes of the development of autoimmune pathology and search for the ways of its treatment]. Probl Med Nauki ta Osvity. 2000; (1): 22-37. Russian.

Goltsev AN, Bondarovych NA, Dubrava TG, et al. Immunological traits of cryoablation in combination therapy of cancer. Probl Cryobiol Cryomed. 2019; 29(4): 297-302. CrossRef

Goltsev AN, Dubrava TG, Lutsenko ED, et al. [Manifestation of immune correcting effect of cryopreserved cells of fetal liver of different gestation terms under development conditions of experimental model of graft-versus-host reaction]. Genes & Cells. 2010; 5(3): 82-6. Russian.

Goltsev AN, Lutsenko ED, Dimitrov AYu, et al. Peculiarities of functional state modulation of genetic apparatus of fetal liver cells with stemness characteristics after cryopreservation. Cryo Letters. 2011; 32(6): 543-4.

Goltsev KA, Ovsyannikov SYe, Kozhina OYu, et al. Correction of metabolic impairments with 'Cryocell-Hemocord' cord blood preparation during acute purulent peritonitis. Problems of Cryobiology. 2011; 21(1): 96-103. Full Text

Grischenko VI, Goltsev AN. Transplantation of the products of embryofetoplacental complex from understanding of mechanism of the effect to increasing the efficiency of application. Problems of Cryobiology. 2002; (1): 54-84.

Hagemeijer MC, Monastyrska I, Griffith J, et al. Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4. Virology. 2014; 458-459 (1): 125-35. CrossRef

Helmy YA, Fawzy M, Elaswad A, et al. The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. J Clin Med. [Internet]. 2020 Apr 24 [cited 2020 May 15]; 9(4): 1225. Available from: https://www.mdpi.com/2077-0383/9/4/1225 CrossRef

Hoffmann MH, Griffiths HR. The dual role of reactive oxygen species in autoimmune and inflammatory diseases: evidence from preclinical models. Radic Biol Med. 2018; 125: 62-71. CrossRef

Katkov II, Kima MS, Bajpaic R. Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells. Cryobiology. 2006; 53 (2): 194−205. CrossRef

Khoury M, Cuenca J, Cruz FF, et al. Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19. Eur Respir J [Internet]. 2020 Jun 4 [cited 2020 Jun 15]; 55(6): 2000858. Available from:https://erj.ersjournals.com/content/55/6/2000858 CrossRef

Kienhofer D, Boeltz S, Hoffmann MH. Reactive oxygen homeostasis - the balance for preventing autoimmunity. Lupus. 2016; 25(8): 943-54. CrossRef

Kindler E, Thiel V, Weber F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res. 2016; 96: 219-43. CrossRef

Kobasa D, Jones SM, Shinya K, et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature. 2007; 445(7125): 319-23. CrossRef

Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M, et al. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol. 2007; 81(2): 548-57. CrossRef

Koval GK, Lutsenko OD, Grisha IG, et al. Impact of lyophilisation on integrity of structural and functional characteristics of human cord blood leukoncentrate. Probl Cryobiol Cryomed. 2019; 29(4): 332-43. CrossRef

Kozhyna OYu, Ostankov MV, Grisha IG, et al. [Application of cryopreserved human cord blood leucoconcentrat for prophylactic of influenza (experimental research)]. Eksperymental'na i Klinichna Medytsyna. 2012; (4): 16-21. Russian.

Kozhina OYu, Ostankov MV, Ostankova LV, et al. Effect of cryopreserved cord blood on activity of alveolar macrophages in experimental model of influenza. Probl Cryobiol Cryomed. 2013; 23(3): 247-59. Full Text

Kurien BT, Scofield RH. Autoimmunity and oxidatively modified autoantigens. Autoimmun Rev. 2008; 7(7): 567-73. CrossRef

Lee CC, Lin SJ, Cheng PJ, Kuo ML. The regulatory function of umbilical cord blood CD4(+) CD25(+) T cells stimulated with anti-CD3/anti-CD28 and exogenous interleukin (IL)-2 or IL-15. Pediatr Allergy Immunol. 2009; 20(7):624-32. CrossRef

Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2 - mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020; 11(2): 216-28. CrossRef

Leung HN. Mechanism of antibody-dependent enhancement in severe acute respiratory syndrome coronavirus infection: thesis for the degree of Master of Philosophy [dissertation on the internet]. Hong Kong: University of Hong Kong; 2012. 139p. [cited 2020 May 16] Available from: http://hub.hku.hk/handle/10722/174389

Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020; 92(4): 424-32. CrossRef

Li X, Geng M, Peng Y, et al. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020; 10(2): 102-8. CrossRef

Lutsenko ED, Ostankov MV, Dimitrov AYu, Goltsev AN. [Selection of cryopreservation mode of placenta cells determines its immunological properties]. Biofizika Zhivoi Kletki. 2014; 10: 120-2. Russian.

Lutsenko OD, Ostankova LV, Ostankov MV, et al. [Features of changes in the phenotype of human cord blood leukoconcentrate after cryopreservation and lyophilization]. In: Proceedings of the VIII National Congress of Pathophysiologists of Ukraine 'Pathological physiology - health care of Ukraine'; 2020 March 13-15 Odesa, Ukraine. Odesa; 2020. p. 35. Ukrainian.

Lyons-Weiler J. Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity. J Transl Autoimmun. [Internet]. 2020 Apr 9 [cited 2020 May 15]; 3:100051. Available from:https://www.sciencedirect.com/science/article/pii/S2589909020300186 CrossRef

Malha L, Mueller FB, Pecker MS, et al. COVID-19 and the renin-angiotensin system. Kidney Int Rep. 2020; 5(5): 563-5. CrossRef

Mandic Havelka A, Yektaei-Karin E, Hultenby K, et al. Maternal plasma level of antimicrobial peptide LL37 is a major determinant factor of neonatal plasma LL37 level. Acta Paediatr. 2010; 99(6): 836-41. CrossRef

Maringer K, Fernandez-Sesma A. Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection. Cytokine Growth Factor Rev. 2014; 25(6): 669-79. CrossRef

Marquez-Curtis LA, Janowska-Wieczorek A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. Biomed Res Int. [Internet]. 2013[cited 2020 May 15]; 2013: 561098. Available from: https://www.hindawi.com/journals/bmri/2013/561098/ CrossRef

Miller A, Reandelar MJ, Fasciglione K, et al. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. (Preprint) medRxiv [Internet]. 28 March 2020 [cited 2020 May 15]; 20042937 Available from: https://www.medrxiv.org/content/10.1101/2020.03.24.20042937v1 CrossRef

Noronha NC, Mizukami A, Caliari-Oliveira C, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther. [Internet]. 2019 May 2 [cited 2020 May 15]; 10(1): 131. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-019-1224-y CrossRef

Olson JK, Croxford JL, Miller SD. Virus-induced autoimmunity: potential role of viruses in initiation, perpetuation, and progression of T-cell-mediated autoimmune disease. Viral Immunol. 2001; 14(3): 227-50. CrossRef

Onasenko YeS, Brovko YeV, Volina VV, Ponomareva VL. Infection of animals with the influenza virus after a preliminary administration of the preparation 'Cryocell-Haemocord'. Report I. Investigation of functional activity of murine immunocompetent organs. Problems of Cryobiology. 2010; 20(1): 99-105. Full Text

Paludan SR. Innate antiviral defenses independent of inducible IFNα/β production. Trends Immunol. 2016; 37(9): 588-96. CrossRef

Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. [Internet]. 2020 Mar 12 [cited 2020 May 15]; ciaa248. Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa248/5803306. CrossRef

Regmi S, Pathak S, Kim JO, et al. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives. Eur J Cell Biol. [Internet]. 2019 December [cited 2020 May 15];98(5-8): 151041. Available from: https://www.sciencedirect.com/science/article/pii/S0171933519300378?via%3Dihub CrossRef

Reid AH, Fanning TG, Hultin JV, Taubenberger JK. Origin and evolution of the 1918 'Spanish' influenza virus hemagglutinin gene. Proc Natl Acad Sci USA. 1999; 96(4): 1651-6. CrossRef

Reinholz M, Ruzicka T, Schauber J. Cathelicidin LL-37: an antimicrobial peptide with a role in inflammatory skin disease. Ann Dermatol. 2012; 24(2): 126-35. CrossRef

Rusek P, Wala M, DruszczyÑska M, Fol M. Infectious agents as stimuli of trained innate immunity. Int J Mol Sci [Internet]. 2018 Feb 3 [cited 2020 May 15]; 19(2): E456. Available from: https://www.mdpi.com/1422-0067/19/2/456 CrossRef

Sakaguchi S, Mikami N, Wing J B, et al. Regulatory T cells and human disease. Annu Rev Immunol, 2020; 38:541-66. CrossRef

Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J [Internet]. 2019 May 27 [cited 2020 May 15]; 16(1): 69. Available from: https://virologyj.biomedcentral.com/articles/10.1186/s12985-019-1182-0 CrossRef

Scott MG, Davidson DJ, Gold MR, et al. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol. 2002; 169(7): 3883-91. CrossRef

Shi CS, Qi HY, Boularan C, et al. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J Immunol. 2014; 193(6): 3080-9. CrossRef

Siracusano G, Pastori C, Lopalco L. Humoral immune responses in COVID-19 patients: a window on the state of the art. Front Immunol [Internet]. 2020 10 May 15 [cited 2020 May 15]; 11: 1049. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2020.01049/full CrossRef

Soliman R, Brassey J, Pluddemann A, et al. Does BCG vaccination protect against acute respiratory infections and COVID-19? A rapid review of current evidence. The Centre for Evidence-Based Medicine [Internet]. 2020 April 24 [cited 2020 May 15]. Available from: https://www.cebm.net/covid-19/does-bcg-vaccination-protect-against-acute-respiratory-infections-and-covid-19-a-rapid-review-of-current-evidence/

Stetsyshyn VG, Ostankova LV, Gaevskaya YuA, et al. [Immune correcting of genital herpes with cryopreserved cord blood (experimental study)]. Medytsyna Sogodni i Zavtra. 2015. 69 (4): 56-62. Russian.

Takakia H, Ichimiyab S, Matsumotoa M, Seyaa T. Mucosal immune response in nasal associated lymphoid tissue upon intranasal administration by adjuvants. J Innate Immun. 2018; 10 (5-6): 515-21. CrossRef

Tay MZ, Poh CM, Renia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 20(6): 363-74. CrossRef

Tetro J. Is COVID-19 receiving ADE from other coronaviruses? Microbes Infect. 2020; 22(2): 72-3. CrossRef

Thanunchai M, Kanrai P, Wiboon-Ut S, et al. Tropism of avian influenza A (H5N1) virus to mesenchymal stem cells and CD34+ hematopoietic stem cells. PLoS One. [Internet]. 2013 Dec 10 [cited 2020 May 15]; 8(12): e81805. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081805 CrossRef

Thorp HH. Both/and problem in an either/or world. Science. 2020; 368 (6492): 681. CrossRef

Tsivgoulis G, Fragkou PC, Delides A, et al. Quantitative evaluation of olfactory dysfunction in hospitalized patients with Coronavirus [2] (COVID-19). Neurol [Internet]. 2020 May 25 [cited 2020 May 27]: 1-3. Available from: https://link.springer.com/article/10.1007/s00415-020-09935-9 CrossRef

Tsutsayeva AA, Brovko EV, Zheltjakova IA, et al. [Leukoconcentrate of cord blood 'Hemocord'. Morphofunctional properties of the preparation before and after cryopreservation]. Nove v Gematologiyi ta Transfuziologiyi. Kyiv. 2006; (5): 99-103. Russian.

Tsutsayeva AA, Grischenko VI, Kudokotseva OV, et al. Cryopreservation of hematopoietic stem cells out of human cord blood. Problems of Cryobiology. 2000; (1): 59-63.

Tsutsayeva AA, Tsyganenko AYa, Zheltjakova IA, Pavlenko NV. [Methods for storing pathological material containing influenza virus]. Eksperymentalna i Klinichna Medytsyna. 2004; (2): 76-8. Russian.

Tsutsaieva AO, Hryshchenko VI, Onasenko OS, et al. inventors; Institute for Problems of Cryobiology and Cryomedicine, assignee. [Method for preventing respiratory viral infection]. Patent of Ukraine N 21484U, 2007 March 15. Ukrainian.

Tsutsayeva AA, Volina VV, Sokol LV, Zhulikov OA. Effect of human cord blood leukoconcentrate on skin regenerative activity in culture in vitro. Problems of Cryobiology. 2009; 19(1): 93-9. Full Text

Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020; 9(1): 601-4. CrossRef

Wang Q, Qiu Y, Li J-Y, et al. A unique protease cleavage site predicted in the spike protein of the novel pneumonia coronavirus (2019-nCoV) potentially related to viral transmissibility. Virol Sin [Internet]. 2020 Mar 20 [cited 2020 May 15]: 1-3. Available from: https://link.springer.com/article/10.1007/s12250-020-00212-7 CrossRef

Ward P, Higenbottam T, Gabbay F, et al. 'COVID-19 vaccine and antiviral drug development'. Faculty of pharmaceutical medicine blog [Internet]. 08 April 2020 [cited 2020 May 15]. Available from: https://www.fpm.org.uk/blog/covid-19-vaccine-and-antiviral-drug-development.

Watanabe Y, Berndsen ZT, Raghwani J, et al. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nat Commun [Internet]. 2020 May 27 [cited 2020 May 28]; 11(1): 2688. Available from: https://www.nature.com/articles/s41467-020-16567-0 CrossRef

Wei H, Li Z, Hu S, et al. Apoptosis of mesenchymal stem cells induced by hydrogen peroxide concerns both endoplasmic reticulum stress and mitochondrial death pathway through regulation of caspases, p38 and JNK. J Cell Biochem. 2010; 111(4): 967-78. CrossRef

Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005; 69 (4): 635-64. CrossRef

Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367(6483): 1260-3. CrossRef

Wu R, Wang L, Kuo HD, et al. An update on current therapeutic drugs treating COVID-19. Curr Pharmacol Rep. 2020; 6: 56–70. CrossRef

Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in china: summary of a report of 72 314 cases from the chinese center for disease control and prevention. JAMA. 2020; 323(13): 1239-42. CrossRef

Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8(4): 420-2. CrossRef

Yang TJ, Chang YC, Ko TP, et al. Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans. Proc Natl Acad Sci U S A. 2020; 117(3): 1438-46. CrossRef

Yusuf H, Kett V. Current prospects and future challenges for nasal vaccine delivery. Hum Vaccin Immunother. 2017; 13(1):34-45. CrossRef

Zhang H, Zhou P, Wei Y, et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med. 2020 May 5;172(9): 629-32. CrossRef

Zhou G, Zhao Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int J Biol Sci. 2020;16(10): 1718-23. CrossRef

Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020; 181(5): 1016-35. CrossRef

Загрузки

Опубликован

2020-06-26

Как цитировать

Goltsev, A., Fuller, B., Bondarovich, M., Babenko, N., Gaevska, Y., Buriak, I., Dubrava, T. ., Yampolska, K., Lutsenko, O., & Ostankov, M. (2020). COVID-19 as a Potential Target for Cryobiology and Cryomedicine. Проблемы криобиологии и криомедицины, 30(2), 107–131. https://doi.org/10.15407/cryo30.02.107

Выпуск

Раздел

Обзорные статьи