Структурно-функциональные изменения в тканях сердца гетеро- и гомойотермных животных при искусственном и естественном гипометаболизме

Автор(и)

  • Viktoria V. Lomako Інститут проблем кріобіології Ñ– кріомедицини НАН Украині, м. Харків
  • Alexsandr V. Shilo Інститут проблем кріобіології Ñ– кріомедицини НАН Украині, м. Харків
  • Igor F. Kovalenko Інститут проблем кріобіології Ñ– кріомедицини НАН України, м. Харків

DOI:

https://doi.org/10.15407/cryo26.04.308

Ключові слова:

гіпометаболізм, гібернація, гомойотермія, гетеротермія, гістологія міокарда, щури, хом'яки

Анотація

При штучному гіпометаболізмі(комбінований вплив гіпокÑÑ–Ñ—, гіперкапнії Ñ– гіпотермії) знижувалиÑÑ Ñ‚ÐµÐ¼Ð¿ÐµÑ€Ð°Ñ‚ÑƒÑ€Ð° тіла(ТТ) до(17 ± 1) Ñ–(16 ± 1)°С Ñ– чаÑтота Ñерцевих Ñкорочень до(99 ± 20) Ñ–(66 ± 16) ударів/хв у щурів Ñ– хом'Ñків відповідно, а при гібернації– до(8 ± 1)°С Ñ–5–13 ударів/хв. У тканині міокарда при цьому ÑпоÑтерігалиÑÑ Ð³Ñ–Ð¿ÐµÑ€ÐµÐ¼Ñ–Ñ Ð²ÐµÐ½, артерій Ñ– капілÑрів;
Ð·Ð±Ñ–Ð»ÑŒÑˆÐµÐ½Ð½Ñ Ð¿ÐµÑ€Ð¸Ð²Ð°ÑкулÑрних та інтерÑтиціальних проÑторів; у кардіоміоцитах– фокально ознаки зерниÑтої, гідропічної Ñ– гіаліново-крапельної диÑтрофій, а також багато Ñдер на різних ÑтадіÑÑ… некробіозу(пікноз, рекÑÑ–Ñ Ñ– лізиÑ). Крім цього, через2 години піÑÐ»Ñ Ð³Ñ–Ð¿Ð¾Ð¼ÐµÑ‚Ð°Ð±Ð¾Ð»Ñ–Ð·Ð¼Ñƒ виÑвлÑлиÑÑ Ñ‚Ñ€Ð¾Ð¼Ð±Ð¸ в Ñудинах, без'Ñдерні зони некрозу, у чаÑтини кардіоміоцитів щурів– ще й великі Ñдра. Зміни в міокарді зберігалиÑÑ Ñ– через 24 години, але більша Ñ—Ñ… чаÑтина були оборотними піÑÐ»Ñ Ð½Ð¾Ñ€Ð¼Ð°Ð»Ñ–Ð·Ð°Ñ†Ñ–Ñ— ТТ Ñ– кровообігу, мали адаптивний характер, а Ð°ÐºÑ‚Ð¸Ð²Ð°Ñ†Ñ–Ñ Ð½ÐµÐºÑ€Ð¾Ð±Ñ–Ð¾Ñ‚Ð¸Ñ‡Ð½Ð¸Ñ… процеÑів, Ñк відомо, ÑприÑÑ” приÑкоренню фізіологічної регенерації.

Біографії авторів

Viktoria V. Lomako, Інститут проблем кріобіології і кріомедицини НАН Украині, м. Харків

Відділ кріофізіології

Alexsandr V. Shilo, Інститут проблем кріобіології і кріомедицини НАН Украині, м. Харків

Відділ кріофізіології

 

Igor F. Kovalenko, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ кріофізіології

Посилання

Bayevsky R.M., Ivanov G.G. Heart rate variability: theoretical aspects and clinical application. Moscow; 2000.

Barros R.C. H., Abe A.S., Carnio E.C., Branco L.G.S. Regulation of breathing and body temperature of a burrowing rodent during hypoxic-hypercapnia. Comp Biochem Physiol A Mol Integr Physiol. 2004; 138(1): 97–104. CrossRef PubMed

Blackstone E., Morrison M., Roth M.B. H2S induces a suspended animation-like state in mice. Science 2005: 308(5721): 518. CrossRef PubMed

Bouna H.R., Verhaag E.M., Otis J.P. et al. Induction of torpor: mimicking natural metabolic suppression for biomedical applications. J Cell Physiol 2012; 227(4): 1285–1290. CrossRef PubMed

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 1976; 72(7): 248–254. CrossRef

Carey H.V., Andrews M.T., Martin S.L. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 2003; 83(4): 1153–1181. CrossRef PubMed

Chatfield P.O., Lyman C.P. Circulatory changes during process of arousal in the hibernating hamsters. Am J Physiol 1950; 163(3): 566–574. PubMed

de Vrij E.L., Vogelaar P.C., Goris M. et al. Platelet dynamics during natural and pharmacologically induced torpor and forced hypothermia. PLoS ONE 2014; 9(4): e93218. CrossRef PubMed

Deveci D., Egginton S. Differing mechanisms of cold-induced changes in capillary supply in m. tibialis anterior of rats and hamsters. J Experim Biology 2002; 205(6): 829–840.

Dickson B.A. Venous thrombosis: on the history of Virchow's triad. University of Toronto Medical Journal 2004; 81(3): 166–171.

Dikic D., Heldmaier G., Meyer C.W. Induced torpor in different strains of laboratory mice. In: Lovegrove B.G., McKechnie A.E., editors. Hypometabolism in animals: torpor, hibernation and cryobiology. Pietermaritzburg: University of KwaZulu-Natal; 2008. p. 223–230.

Drew K.L., Rice M.E., Kuhn T.B., Smith M.A. Neuroprotective adapatations in hibernation: therapeutic implications for ischemiareperfusion, traumatic brain injury and neurodegenerative diseases. Free Radic Biol Med 2001; 31(5): 563–573. CrossRef

Eagles D.A., Jacques L.B., Taboada J. et al. Cardiac arrhythmias during arousal from hibernation in three species of rodents. Am J Physiol 1988: 254(1): 102–108.

Field L. Modulation of the cardiomyocyte cell cycle in genetically altered animals. Ann N Y Acad Sci 2004; 1015: 160–170. CrossRef PubMed

Heldmaier G., Ortmann S., Elvert R. Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 2004; 141(3): 317–329. CrossRef PubMed

Horwitz B.A., Chau S.M., Hamilton J.S. et al. Temporal relationships of blood pressure, heart rate, baroreflex function, and body temperature change over a hibernation bout in Syrian hamsters. Am J Physiol Regul Integr Comp Physiol 2013; 305(7): R759–R768. CrossRef

Jarsky T.M., Stephenson R. Effects of hypoxia and hypercapnia on circadian rhythms in the golden hamster (Mesocricetus auratus). J Appl Physiol 2000; 89(6): 2130–2138.

Johansson B.W. The hibernator heart-nature's model of resis-tance to ventricular fibrillation. Cardiovasc Res 1996; 31: 826–832. CrossRef PubMed

Kuhnen G., Wloch B., Wunnenberg W. Effects of acute hypoxia and/or hypercapnia on body temperatures and cold induced thermogenesis in the golden hamster. J Therm Biol 1987; 12(2):103–107. CrossRef

Kоzlova V.F., Yurchenko Т.N. Structural aspects of adaptation in hibernators. Problems of Cryobiology 1996; (3): 44–51.

Lomako V.V., Samokhina L.M., Shylo O.V. Effect of natural and various artificial hypometabolism on activity of protease-protease inhibitor system in hamsters and rats. Problems of Cryobiology 2011; 21(3): 280–290.

Lomako V.V., Shylo A.V. Histological picture in neocortex and hypothalamus of homoio- and heterothermal animals under artificial and natural hipometabolism. Probl Cryobiol Cryomed 2015; (2): 93–103.

Lyman C.P., O'Brien R.C. Autonomic control of circulation during the hibernating cycle in ground squirrels. J Physiol (Lond) 1963; 168(3): 477–499. CrossRef

Melnichuk С.D., Меlnichuk D.О. Hypobiosis of animals (molecular mechanisms and practical implications for agriculture and medicine). Kyiv: Publishing Center NAU; 2007.

Mertens A., Stiedl O., Steinlechner S., Meyer M. Cardiac dynamics during daily torpor in the Djungarian hamster (Phodopus sungorus). Am J Physiol Regul Integr Comp Physiol 2008; 294 (2): R639–R650. CrossRef

Milsom W.K., Zimmer M.B., Harris M.B. Regulation of cardiac rhythm in hibernating mammals. Comp Biochem Physiol 1999; 124(4): 383–391. CrossRef

Nielsen K., Owman C. Difference in cardiac adrenergic innervation between hibernators and non-hibernating mammals. Acta Physiol Scand Suppl 1968; 316: 1–30. CrossRef

Phillips P.K., Heath J.E. Comparison of surface temperature in 13-lined ground squirrel (Spermophilus tridecimlineatus) and yellowbellied marmot (Marmota flaviventris) during arousal from hibernation. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 2004; 138(4): 451–457. CrossRef PubMed

Physiology of circulation. Physiology of blood. In a series: Physiology Guide. Leningrad: Nauka; 1980.

Polderman K.H., Herold I. Therapeutic hypothermia and controlled normothermia in the intensive care unit: practical considerations, side effects, and cooling methods. Crit Care Med 2009; 37(3):R1101–R1120. CrossRef

Reil J.-C., Custodis F., Swedberg K. et al. Heart rate reduction in cardiovascular disease and therapy. Clin Res Cardiol 2011; 100(1): 11–19. CrossRef PubMed

Shlyakhto E.V., Bokeria L.A., Rybakova M.G. et al. Cellular aspects of pathogenesis of hypertrophic cardiomyopathy: the role of cardiomyocyte polyploidy and activation of proliferating cell nuclear antigen in the myocardium. Tsitologiya 2007; 49(10):817–823. CrossRef

Shylo A.V., Lomako V.V., Samokhina L.M., Babijchuk G.A. Proteinases and its inhibitors activity at artificial hypometabolic state in rats. Problems of Cryobiology 2004; (2): 17–27.

Shylo O.V. Change of heart activity at artificial hypometabolic state and in the course of arousal in hibernators and nonhibernators. Naukovyy Visnyk NAU 2008: (126): 81–87.

Shylo O.V., Lomako V.V., Babiychuk G.O. Artificial hibernationcaused cardiac arrhythmia in homoio- and heterothermal animals. Cardiology of Uzbekistan 2016: 1–2 (39–40): 271–272.

Swoap S.J., Gutilla M.J. Cardiovascular changes during daily torpor in the laboratory mouse. Am J Physiol Regul Integr Comp Physiol 2009; 297 (Issue 3): R769–R774.

Timofeyev N.N., Prokof'eva L.P. Neurochemistry of hypobiosis and limits of organism cryoresistance. Ðœoscow: Meditsina; 1997.

Volkova О.V., Eletskiy Yu.K. Fundamentals of histology and histological techniques. Moscow: Meditsina; 1982.

Zhegunov G.F. Adaptation peculiarities of hibernators' heart. Problems of Cryobiology 1993; (3): 21–33.

Downloads

Опубліковано

2016-12-23

Як цитувати

Lomako, V. V., Shilo, A. V., & Kovalenko, I. F. (2016). Структурно-функциональные изменения в тканях сердца гетеро- и гомойотермных животных при искусственном и естественном гипометаболизме. Проблеми кріобіології і кріомедицини, 26(4), 308–321. https://doi.org/10.15407/cryo26.04.308

Номер

Розділ

Теоретична та експериментальна кріобіологія