Можливості електронної мікроскопії у вирішенні завдань кріобіології. Ретроспективний аналіз

Автор(и)

  • Nikolay Repin Інститут проблем кріобіології і кріомедицини НАН України, м. Харків https://orcid.org/0000-0001-8983-4789
  • Larisa Marchenko Інститут проблем кріобіології і кріомедицини НАН України, м. Харків https://orcid.org/0000-0002-5152-2218
  • Tatyana Govorukha Інститут проблем кріобіології і кріомедицини НАН України, м. Харків https://orcid.org/0000-0002-5293-6324
  • Anatoliy Goltsev Інститут проблем кріобіології і кріомедицини НАН України, м. Харків: ДП «Міжвідомчий науковий центр кріобіології і кріомедицини» НАН України, АМН України та МОЗ України https://orcid.org/0000-0002-5289-5876

DOI:

https://doi.org/10.15407/cryo32.01.003

Ключові слова:

електронна мікроскопія, заморожування-сколювання, заморожування-заміщення, кріофіксація, кристалоутворення, еритроцити, мембрана

Анотація

У роботі представлено історію розвитку і використання низькотемпературних електронно-мікроскопічних методів заморожування-сколювання, заморожування-заміщення та інших в кріобіологічних дослідженнях в Інституті проблем кріобіології і кріомедицини НАН України. Продемонстровано можливості даних методів у вивченні процесів кристалоутворення в розчинах кріопротекторів, клітинних суспензіях, тканинах за різних умов заморожування. Наведено окремі результати аналізу ультраструктурних змін у біологічних системах різного рівня організації, на різних етапах онтогенезу, під дією охолодження в широкому діапазоні температур (від 37 до –196°C). Застосування високороздільного електронно-мікроскопічного методу у поєднанні з допоміжним технічним устаткуванням і методичними прийомами дозволило отримати важливі для кріобіології фундаментальні результати щодо формування та локалізації кристалів льоду у внутрішньоклітинному просторі, температурозалежного перерозподілу трансмембранних білків, зміни ультраструктури еритроцитів та їх мембран у процесі гіпотермічного зберігання.

 

Probl Cryobiol Cryomed 2022; 32(1): 003–013

Посилання

Apopa PL, Qian Y, Shao R. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling Part Fibr Toxicol. [Internet] 2009; Jan 9 [cited 2019 Nov 18]; 6:1. Available from: https://particleandfibretoxicology.biomedcentral.com/articles/10.1186/1743-8977-6-1 CrossRef

Asahina E, Shimada K, Hisada J. A stable state of frozen protoplasm with invisible intracellular ice crystals obtained by rapid cooling. Exp Cell Res. 1970; 59(2): 349-58. CrossRef

Babiychuk VG, Marchenko VS, Babiychuk GA, et al. Structural and functional effect mechanisms of extreme cooling on hypothalamus thermoregulatory centers. Problems of Cryobiology. 2004; (2): 62-70. Full Text

Beck M, Baumeister W. Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell Biol. 2016; (26): 825-37. CrossRef

Drokin SI, Stain H, Govorukha TP. Ultrastructure of carp Cyprinus carpio spermatozoa after cooling, dilution and freeze-thawing. CryoLetters. 2002; (24): 49-55. PubMed

Farrant J, Walter CA, Heather L, McGann LE. Use of two-step cooling procedures to examine factors influencing cell survival following freezing and thawing. Cryobiology. 1977; 14(3): 273-86. CrossRef

Fleck RA. Low-temperature electron microscopy: techniques and protocols. Methods Mol Biol . 2015; 1257: 243-74. CrossRef

Fujikawa S. Freeze-fracture and etching on membrane damage on humane erythrocytes caused by formation of intracellular ice. Cryobiology. 1980; (12): 351-62. CrossRef

Goltsev AM. [Cryobiological pedestal of the Nobel Prize in chemistry for 2017]. Visn Nac Akad Nauk Ukr. 2018. (6): 75-85. Ukrainian. CrossRef

Gordienko EA, Pushkar. NS. [Physical foundations of low-temperature preservation of cell suspensions]. Kyiv: Naukova Dumka, 1994. 144 p. Russian

Gulevskyy АК, Repin NV, Schenyavsky II. Impairment of barrier properties of erythrocyte membranes caused by low temperatures is a result of disorganization of hemoglobin supramolecular structure. CryoLetters. 2016; 37(5): 357-64. PubMed

Hurbain I, Sachse M. The future is cold: cryo-preparation methods for transmission electron microscopy of cells. Biol Cell. 2011;103(9):405-20. CrossRef

Ignatyeva TA, Voyevodin VN, Goltsev AN, et al. Perspectives of constant gradient magnetic fields applications in biotechnology. Am J Biosci Bioeng. 2014; 2(6): 72-7. CrossRef

Kaprelyants AS, Marchenko LN, Matyash IP. [Ultrastructural analysis of liver destruction using freeze-substitution upon cryoapplication]. Kriobiologiya. 1986; (3): 36-9. Russian.

Kaprelyants OS, Marchenko LN, Migunova RK. Structure of liver sinusoid endothelial cells under the conditions of general cooling of rats. Problems of Cryobiology. 2003; (4): 70-6. Full Text

Kiroshka VV, Repin NV, Nadutov VM et al. [Synthesis, biological activity and cytotoxicity nanopowders based on Fe3O4]. Nanosystems, Nanomaterials, Nanotechnologies. 2010; 8(4): 787-98. Russian.

L'Azou B, Jorly J, Dinhill, et al. In vitro effects of nanoparticles on renal cells. Part Fibr Toxicol. [Internet] 2008; Dec 19 [cited 2019 Sep 21]; 5:22. Available from: http://www.particleandfi bretoxicology.com/content/5/1/22 CrossRef

MacKenzie AP, Luyet BJ. Electron microscope study of recrystallization in rapidly frozen gelatin gels. Biodynamica. 1967; 10(206): 95-122.

Marchenko VS, Babiychuk GA, Marchenko LN. [To fractal mechanisms of the structural and functional state of thermoregulation centers under hypothermia and hibernation]. Problems of Cryobiology. 2005; 15(3): 503-8. Ukrainian Full Text

Nei T. Growth of ice crystals in frozen specimens. J Micros. 1973; 22 (3): 227-33. CrossRef

Pavlovych OV, Hapon HO, Yurchuk TO, et al. Ultrastructural and functional characteristics of human spermatozoa after cryopreservation by vitrification. Probl Cryobiol Cryomed. 2020; 30 (1): 24-33. CrossRef

Pushkar NS, Kaprelyants AS, Pankov EYa. [Cell ultrastructure at low temperatures]. Kyiv: Naukova Dumka, 1978. 144 p. Russian.

Repin NV. [Study of extra- and intracellular crystallization in human erythrocytes under different cooling conditions]. Kriobiologiya. 1986. (3): 31-6. Russian.

Repin NV. To the question about two-step rapid freezing method. Estimation of aqueous membrane permeability in erythrocytes at temperature exposure stage. CryoLetters. 2009; (4): 251-61. PubMed

Repin NV, Bobrova EN, Repina SV. Temperature-induced transformation of mammalian red blood cells during hyperthermia. J Bioelectrochemistry. 2008; 73 (2): 101-5. CrossRef

Repin NV, Repina SV. [The ultrastructural and dynamic characteristics of erythrocyte membranes. The effect of the physiological status and temperature]. Tsitologiia. 1990. 32(11): 1094-8. Russian. PubMed

Repin NV, Skornyakov BA. [Methodological features and technical support of the method of freeze-fracturing]. Kriobiologiya i Kriomeditsina. 1982; (10): 89-92. Russian.

Repin NV, Yurchenko TN. [The role of environmental factors and the duration of exposure at 4°C in maintaining the shape of erythrocytes and their membranes. The mechanism of vesicle formation]. In: Goltsev AN, editor. [Actual problems of cryobiology and cryomedicine.] Kharkiv; 2012. p. 165-206. Russian.

Robards AW, Sleytr UB. Low temperature methods in biological electron microscopy (Practical methods in electron microscopy). Amsterdam-New York-Oxford: Elsevier, 1985. 551 p. 30. Staehelin A, Bertaud WS. Temperature and contamination dependent freeze-etch images of frozen water and glycerol solutions. J Ultrastr Research. 1971; 37 (1-2): 146-68. CrossRef

Suzdalev IP. [Nanotechnology: physical-chemistry of nanoclusters, nanostructures and nanomaterials]. Moscow: KomKniga, 2006. 592 p. Russian.

Watari F, Takashi N, Yokoyama A, et al. Material nanosizing effect on living organisms: non-specific, biointeractive, physical size effects. J R Soc Interface. 2009; 6: 371-88. CrossRef

Yurchenko TN, Kozlova VF, Skornyakov BA, et al. [Influence of cryoprotectants on biological systems]. Kyiv: Naukova Dumka, 1989. 240 p. Russian.

Zagnojko VI, Nardid OA, Lugovoj VI, Govorukha TP. Relationship between the degree of lysosome and mitochondria structural changes on freeze-thawing and the release of protein synthesis inhibitor. CryoLetters 1985; (6): 151-62.

Zinchenko AV, Mank VV, Ovcharenko FD, et al. [Structure and phase states of water-glycerol solutions]. Reports of the National Academy of Sciences of Ukraine. Ser B. 1982; (8): 38-42. Russian.

Downloads

Опубліковано

2022-06-03

Як цитувати

Repin , N., Marchenko, L., Govorukha, T., & Goltsev, A. (2022). Можливості електронної мікроскопії у вирішенні завдань кріобіології. Ретроспективний аналіз . Проблеми кріобіології і кріомедицини, 32(1), 3–13. https://doi.org/10.15407/cryo32.01.003

Номер

Розділ

Оглядові статті